A330319 a(n) = Sum_{i=1..n} phi(i)*phi(i+1), where phi(n) = A000010(n) is Euler's totient function.
1, 3, 7, 15, 23, 35, 59, 83, 107, 147, 187, 235, 307, 355, 419, 547, 643, 751, 895, 991, 1111, 1331, 1507, 1667, 1907, 2123, 2339, 2675, 2899, 3139, 3619, 3939, 4259, 4643, 4931, 5363, 6011, 6443, 6827, 7467, 7947, 8451, 9291, 9771, 10299, 11311, 12047, 12719, 13559, 14199, 14967, 16215, 17151, 17871, 18831
Offset: 1
Keywords
References
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 32.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- A. E. Ingham, Some asymptotic formulae in the theory of numbers, Journal of the London Mathematical Society, Vol. s1-2, No. 3 (1927), pp. 202-208.
- L. Mirsky, Summation formula involving arithmetic functions, Duke Mathematical Journal, Vol. 16, No. 2 (1949), pp. 261-272.
Programs
-
Mathematica
phi = EulerPhi[Range[56]]; Accumulate[Most[phi] * Rest[phi]] (* Amiram Eldar, Mar 05 2020 *)
-
PARI
a(n) = sum(i=1, n, eulerphi(i)*eulerphi(i+1)); \\ Michel Marcus, Mar 05 2020
Formula
a(n) ~ (c/3) * n^3 + O(n^2*log(n)^2), where c = Product_{p prime}(1 - 2/p^2) (A065474). - Amiram Eldar, Mar 05 2020