cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330319 a(n) = Sum_{i=1..n} phi(i)*phi(i+1), where phi(n) = A000010(n) is Euler's totient function.

Original entry on oeis.org

1, 3, 7, 15, 23, 35, 59, 83, 107, 147, 187, 235, 307, 355, 419, 547, 643, 751, 895, 991, 1111, 1331, 1507, 1667, 1907, 2123, 2339, 2675, 2899, 3139, 3619, 3939, 4259, 4643, 4931, 5363, 6011, 6443, 6827, 7467, 7947, 8451, 9291, 9771, 10299, 11311, 12047, 12719, 13559, 14199, 14967, 16215, 17151, 17871, 18831
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 32.

Crossrefs

Partial sums of A083542.

Programs

  • Mathematica
    phi = EulerPhi[Range[56]]; Accumulate[Most[phi] * Rest[phi]] (* Amiram Eldar, Mar 05 2020 *)
  • PARI
    a(n) = sum(i=1, n, eulerphi(i)*eulerphi(i+1)); \\ Michel Marcus, Mar 05 2020

Formula

a(n) ~ (c/3) * n^3 + O(n^2*log(n)^2), where c = Product_{p prime}(1 - 2/p^2) (A065474). - Amiram Eldar, Mar 05 2020