A330321 a(n) = Sum_{i=1..n} tau(i)*tau(i+1)/2, where tau(n) = A000005(n) is the number of divisors of n.
1, 3, 6, 9, 13, 17, 21, 27, 33, 37, 43, 49, 53, 61, 71, 76, 82, 88, 94, 106, 114, 118, 126, 138, 144, 152, 164, 170, 178, 186, 192, 204, 212, 220, 238, 247, 251, 259, 275, 283, 291, 299, 305, 323, 335, 339, 349, 364, 373, 385, 397, 403, 411, 427, 443, 459, 467, 471, 483, 495, 499, 511, 532, 546, 562, 570, 576, 588
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
Accumulate[a[n_]:=DivisorSum[n, DivisorSigma[0, n+1] / 2 &]; Array[a, 68]] (* Vincenzo Librandi, Jan 11 2020 *)
-
PARI
lista(nmax) = {my(d1 = 1, d2, s = 0); for(k = 2, nmax, d2 = numdiv(k); s += (d1 * d2 / 2); print1(s, ", "); d1 = d2);} \\ Amiram Eldar, Apr 19 2024