A330342 a(n) is the smallest k such that b^(n-1) == b^k (mod n) for all integers b.
0, 1, 2, 3, 4, 1, 6, 3, 2, 1, 10, 3, 12, 1, 2, 7, 16, 5, 18, 3, 2, 1, 22, 3, 4, 1, 8, 3, 28, 1, 30, 7, 2, 1, 10, 5, 36, 1, 2, 3, 40, 5, 42, 3, 8, 1, 46, 7, 6, 9, 2, 3, 52, 17, 14, 7, 2, 1, 58, 3, 60, 1, 2, 15, 4, 5, 66, 3, 2, 9, 70, 5, 72, 1, 14, 3, 16, 5, 78, 7, 26, 1, 82, 5, 4, 1, 2, 7, 88, 5
Offset: 1
Keywords
Programs
-
Mathematica
a[n_] := Module[{k = 0}, While[!AllTrue[Range[n], PowerMod[#, n - 1, n] == PowerMod[#, k, n] &], k++]; k]; Array[a, 100] (* Amiram Eldar, Dec 11 2019 *)
Formula
Extensions
More terms from Amiram Eldar, Dec 11 2019
Comments