cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330348 a(n) is the number of divisors of n whose last digit equals the last digit of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 3, 2, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 3, 1, 1, 4, 1, 2, 1, 1, 4, 2, 2, 1, 3, 2, 1, 1, 2, 1
Offset: 1

Views

Author

Bernard Schott, Jun 04 2020

Keywords

Comments

Inspired by Project Euler, Problem 474 (see link).
a(n) >= 1.
When n > 10 ends with 0, 1, 2 or 5, then a(n) >= 2.
The first 19 terms are the same as A038769, but a(20) = 2 and A038769(20) = 1.
From Robert Israel, Jun 04 2020: (Start)
a(10*n) = A000005(n).
If n is odd, then a(2*n) = a(n) and a(5*n) = A000005(n). (End)
Integers all of whose divisors end with the same last digit (which is necessarily 1) are in A004615. - Bernard Schott, May 07 2021

Examples

			The divisors of 12 that end in 2 are 2 and 12, so a(12) = 2.
		

Crossrefs

Cf. A000005 (number of divisors), A004615, A010879 (last digit of n), A038769.

Programs

  • Maple
    f:= proc(n) local t;
    t:= n mod 10;
    nops(select(k -> k mod 10 = t, numtheory:-divisors(n)))
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 04 2020
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[# - n, 10] == 0 &]; Array[a, 100] (* Amiram Eldar, Jun 04 2020 *)
  • PARI
    a(n) = my(u=n%10); sumdiv(n, d, d%10 == u); \\ Michel Marcus, Jun 04 2020
    
  • Python
    from sympy import divisors
    def a(n): return sum((n-d)%10 == 0 for d in divisors(n, generator=True))
    print([a(n) for n in range(1, 90)]) # Michael S. Branicky, Aug 15 2022