A330370 Irregular triangle read by rows T(n,m) in which row n lists all partitions of n ordered by their k-th ranks, or by their k-th largest parts if all their k-th ranks are zeros, with k = 1..n.
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 4, 1, 1, 1, 3, 2, 2, 3, 2, 1, 1, 3
Offset: 1
Examples
Triangle begins: [1]; [2], [1,1]; [3], [2,1], [1,1,1]; [4], [3,1], [2,2], [2,1,1], [1,1,1,1]; [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1]; [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [3,1,1,1], [2,2,2], ... ... Illustration of initial terms with a symmetric arrangement (note that the self-conjugate partitions are located in the main diagonal): . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * * * * * * * * * * * * * * * * * * * * * 2 * * 3 2 1 2 1 1 2 1 1 1 2 1 1 1 1 * * * * * * * * * * * * * * * * * * * * * 4 3 1 2 2 2 2 1 2 2 1 1 * * * * * * * * * * * * * * * * * * * * * * * 5 4 1 3 2 3 1 1 2 2 2 * * * * * * * * * * * * * * * * * * * * * * * * * 3 1 1 1 * * * * * * * . 6 5 1 4 2 3 3 4 1 1 3 2 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * For n = 9 the 9th row of the triangle contains the partitions ordered as shown below: --------------------------------------------------------------------------------- Ranks Conjugate Label with Partitions k = 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------------------- 1 30 [9] 8 -1 -1 -1 -1 -1 -1 -1 -1 2 29 [8, 1] 6 0 -1 -1 -1 -1 -1 -1 0 3 28 [7, 2] 5 0 -1 -1 -1 -1 -1 0 0 4 27 [6, 3] 4 1 -2 -1 -1 -1 0 0 0 5 26 [7, 1, 1] 4 0 0 -1 -1 -1 -1 0 0 6 25 [5, 4] 3 2 -2 -2 -1 0 0 0 0 7 24 [6, 2, 1] 3 0 0 -1 -1 -1 0 0 0 8 23 [5, 3, 1] 2 1 -1 -1 -1 0 0 0 0 9 22 [6, 1, 1, 1] 2 0 0 0 -1 -1 0 0 0 10 21 [5, 2, 2] 2 -1 1 -1 -1 0 0 0 0 11 20 [4, 4, 1] 1 2 -1 -2 0 0 0 0 0 12 19 [5, 2, 1, 1] 1 0 0 0 -1 0 0 0 0 13 18 [4, 3, 2] 1 0 0 -1 0 0 0 0 0 14 17 [4, 3, 1, 1] 0 1 -1 0 0 0 0 0 0 15 (self-conjugate) [5, 1, 1, 1, 1] All zeros -> 0 0 0 0 0 0 0 0 0 16 (self-conjugate) [3, 3, 3] All zeros -> 0 0 0 0 0 0 0 0 0 17 14 [4, 2, 2, 1] 0 -1 1 0 0 0 0 0 0 18 13 [3, 3, 2, 1] -1 0 0 1 0 0 0 0 0 19 12 [4, 2, 1, 1, 1] -1 0 0 0 1 0 0 0 0 20 11 [3, 2, 2, 2] -1 -2 1 2 0 0 0 0 0 21 10 [3, 3, 1, 1, 1] -2 1 -1 1 1 0 0 0 0 22 9 [4, 1, 1, 1, 1, 1] -2 0 0 0 1 1 0 0 0 23 8 [3, 2, 2, 1, 1] -2 -1 1 1 1 0 0 0 0 24 7 [3, 2, 1, 1, 1, 1] -3 0 0 1 1 1 0 0 0 25 6 [2, 2, 2, 2, 1] -3 -2 2 2 1 0 0 0 0 26 5 [3, 1, 1, 1, 1, 1, 1] -4 0 0 1 1 1 1 0 0 27 4 [2, 2, 2, 1, 1, 1] -4 -1 2 1 1 1 0 0 0 28 3 [2, 2, 1, 1, 1, 1, 1] -5 0 1 1 1 1 1 0 0 29 2 [2, 1, 1, 1, 1, 1, 1, 1] -6 0 1 1 1 1 1 1 0 30 1 [1, 1, 1, 1, 1, 1, 1, 1, 1] -8 1 1 1 1 1 1 1 1 . Two examples of the order of partitions: 1) The partitions [6, 3] and [7, 1, 1] both have their first rank equal to 4, so they are ordered by their sencond rank. 2) The self-conjugate partitions [5, 1, 1, 1, 1] and [3, 3, 3] both have all their ranks equal to zero, so they are ordered by their first part.
Comments