cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A067855 Square of the Euclidean length of the vector of Littlewood-Richardson coefficients of Sum_{lambda |- n} s_lambda^2, where s_lambda are the symmetric Schur functions and the sum runs over all partitions lambda of n.

Original entry on oeis.org

1, 2, 8, 26, 94, 326, 1196, 4358, 16248, 60854, 230184, 874878, 3343614, 12825418, 49368388, 190554410, 737328366, 2858974502, 11106267880, 43215101102, 168398785002, 657070401106, 2566847255572, 10038191414610, 39295007540748
Offset: 0

Views

Author

Richard Stanley, Feb 15 2002

Keywords

Comments

Original name: "Squared length of sum of s_lambda^2, where s_lambda is a Schur function and lambda ranges over all partitions of n."
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/2, g(n) = 4. - Seiichi Manyama, Apr 22 2018
The symbol "|-" means "is a partition of", cf. MathWorld link and the Geloun & Ramgoolam paper. The Littlewood-Richardson coefficients allow a product of two Schur functions to be expressed as a linear combination of Schur functions of the corresponding degree. (The Schur functions symmetric in all n variables correspond to Schur polynomials of partitions extended with 0's to length n.) - M. F. Hasler, Jan 19 2020
See A070933 for similar sums of squares of Littlewood-Richardson coefficients. - M. F. Hasler, Jan 20 2020

Examples

			For n=3 the s_lambda^2 summed over all partitions of n and decomposed into a sum of Schur functions yields
    s(6) + 2 s(3,3) + 2 s(4,2) + s(5,1) + 2 s(2,2,2) + 2 s(3,2,1) + s(4,1,1)
    + 2 s(2,2,1,1) + s(3,1,1,1) + s(2,1,1,1,1) + s(1,1,1,1,1,1),
  and the sum of the squares of the coefficients {1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1} gives a(3) = 26.
		

Crossrefs

Cf. A001868.
List of partitions: A036037, A080577, A181317, A330370.
Cf. A070933 (Sum_{lambda,mu,nu} (c^{lambda}_{mu,nu})^2, |mu| = |nu| = n).
Cf. A003040 (maximum number of standard tableaux of the Ferrers diagrams of the partitions of n).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1,
          binomial(n+n, n), add(b(j, 1)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);  # Alois P. Heinz, Aug 24 2019
  • Mathematica
    Table[Tr[(Apply[List,
      Sum[Tr[s @@@ LRRule[\[Lambda], \[Lambda]]],
       {\[Lambda], Partitions[n]}]] /. s[] -> 1)^2], {n, 1, 10}];
    (* with 'LRRule' defined in http://users.telenet.be/Wouter.Meeussen/ToolBox.nb - Wouter Meeussen, Jan 19 2020 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Binomial[n+n, n],
         Sum[b[j, 1]*b[n - i*j, i-1], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Jan 02 2022, after Alois P. Heinz *)
  • PARI
    A067855_upto(N)=Vec(1/sqrt(prod(i=1,N-1,1-4*'x^i+O('x^N)))) \\ M. F. Hasler, Jan 23 2020

Formula

G.f.: 1/sqrt(Product_{i >= 1} (1 - 4*x^i)).
Euler transform of A001868(n)/2. a(n) = Sum_{pi} Product_{m=1..n} binomial(2*p(m), p(m)), where pi runs through all nonnegative solutions of p(1) + 2*p(2) + ... + n*p(n)=n. - Vladeta Jovovic, Mar 25 2006
a(n) ~ 2^(2*n) / sqrt(c*Pi*n), where c = QPochhammer[1/4] = 0.688537537120339... - Vaclav Kotesovec, Apr 22 2018
By definition, a(n) = Sum_{mu |- 2n} c_mu^2 where Sum_{lambda |- n} s_lambda^2 = Sum_{mu |- 2n} c_mu s_mu, where s_lambda are the Schur polynomials (symmetric in 2n variables) and the sums run over all partitions of n resp. 2n. - M. F. Hasler, Jan 19 2020

Extensions

More terms from Vladeta Jovovic, Mar 25 2006
Name edited by M. F. Hasler following observations by Wouter Meeussen, Jan 17 2020

A208478 Triangle read by rows: T(n,k) = number of partitions of n with positive k-th rank.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 2, 1, 5, 2, 4, 4, 2, 1, 6, 3, 5, 6, 4, 2, 1, 10, 5, 7, 9, 7, 4, 2, 1, 13, 7, 9, 11, 11, 7, 4, 2, 1, 19, 11, 12, 15, 16, 12, 7, 4, 2, 1, 25, 16, 15, 19, 22, 18, 12, 7, 4, 2, 1, 35, 24, 20, 26, 29, 27, 19, 12, 7, 4, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Mar 07 2012

Keywords

Comments

We define the k-th rank of a partition as the k-th part minus the number of parts >= k. Every partition of n has n ranks. This is a generalization of the Dyson's rank of a partition which is the largest part minus the number of parts. Since the first part of a partition is also the largest part of the same partition so the Dyson's rank of a partition is the case for k = 1.
The sum of the k-th ranks of all partitions of n is equal to zero.
Also T(n,k) = number of partitions of n with negative k-th rank.
It appears that reversed rows converge to A000070, the same as A208482. - Omar E. Pol, Mar 11 2012
From Omar E. Pol, Dec 12 2019: (Start)
1) The k-th part of a partition of n is also the number of parts >= k of its conjugate partition.
2) The k-th rank of a partitions is also the number of parts >= k of its conjugate partition minus the number of parts >= k.
For example: for n = 9 consider the partition [5, 3, 1]. The first part is 5, so the conjugate partition has five parts >= 1. The second part is 3, so the conjugate partition has three parts >= 2. The third part is 1, so the conjugate partition has only one part >= 3. The mentioned conjugate partition is [3, 2, 2, 1, 1]. And conversely, consider the partition [3, 2, 2, 1, 1]. The first part is 3, so the conjugate partition has three parts >= 1. The second part is 2, so the conjugate partition has two parts >= 2. the Third part is 2, so the conjugate partition has two parts >= 3, and so on. In this case the conjugate partition is [5, 3, 1].
3) The difference between the k-th part and the (k+1)-st part of the partition of n is also the number of k's in its conjugate partition. For example: consider the partition [5, 3, 1]. The difference between the first and the second part is 5 - 3 = 2, equals the number of 1's in its conjugate partition. The difference between the second and the third part is 3 - 1 = 2, equals the number of 2's in its conjugate partition. The difference between the third and the fourth (virtual) part is 1 - 0 = 1, equals the number of 3's in its conjugate partition [3, 2, 2, 1, 1]. And conversely, consider the partition [3, 2, 2, 1, 1]. The difference between the first and the second part is 3 - 2 = 1, equals the number of 1's in its conjugate partition. The difference between the second and the third part is 2 - 2 = 0, equals the number of 2's in its conjugate partition. The difference between the third and the fourth part is 2 - 1 = 1, equals the number of 3's in its conjugate partition, and so on.
4) The list of n ranks of a partition of n equals the list of n ranks multiplied by -1 of its conjugate partition. For example the nine ranks of the partition [5, 3, 1] of 9 are [2, 1, -1, -1, -1, -1, 0, 0, 0], and the nine ranks of its conjugate partition [3, 2, 2, 1, 1] are [-2, -1, 1, 1, 1, 1, 0, 0, 0].
For a list of partitions of the positive integers ordered by its k-th ranks see A330370. (End)

Examples

			For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
----------------------------------------------------------
Partitions    First      Second       Third      Fourth
of 4          rank        rank        rank        rank
----------------------------------------------------------
4           4-1 =  3    0-1 = -1    0-1 = -1    0-1 = -1
3+1         3-2 =  1    1-1 =  0    0-1 = -1    0-0 =  0
2+2         2-2 =  0    2-2 =  0    0-0 =  0    0-0 =  0
2+1+1       2-3 = -1    1-1 =  0    1-0 =  1    0-0 =  0
1+1+1+1     1-4 = -3    1-0 =  1    1-0 =  1    1-0 =  1
----------------------------------------------------------
The number of partitions of 4 with positive k-th ranks are 2, 1, 2, 1 so row 4 lists 2, 1, 2, 1.
Triangle begins:
   0;
   1,  1;
   1,  1,  1;
   2,  1,  2,  1;
   3,  1,  3,  2,  1;
   5,  2,  4,  4,  2,  1;
   6,  3,  5,  6,  4,  2,  1;
  10,  5,  7,  9,  7,  4,  2,  1;
  13,  7,  9, 11, 11,  7,  4,  2,  1;
  19, 11, 12, 15, 16, 12,  7,  4,  2,  1;
  25, 16, 15, 19, 22, 18, 12,  7,  4,  2,  1;
  35, 24, 20, 26, 29, 27, 19, 12,  7,  4,  2,  1;
  ...
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Mar 11 2012

A330368 Irregular triangle read by rows in which row n lists the ranks of the partitions of n in nonincreasing order.

Original entry on oeis.org

0, 1, -1, 2, 0, -2, 3, 1, 0, -1, -3, 4, 2, 1, 0, -1, -2, -4, 5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5, 6, 4, 3, 2, 2, 1, 0, 0, 0, -1, -2, -2, -3, -4, -6, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 0, 0, -1, -1, -1, -2, -2, -3, -3, -4, -5, -7, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -3, -3, -4, -4, -5, -6, -8
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2019

Keywords

Comments

The rank of a partition is the largest part minus the number of parts.
For more about this ordering, see A330370.
First differs from A105805 at a(49) = T(7,5).

Examples

			Triangle begins:
                              0;
                            1, -1;
                          2,  0, -2;
                      3,  1,  0, -1, -3;
                  4,  2,  1,  0, -1, -2, -4;
          5,  3,  2,  1,  1,  0, -1, -1, -2, -3, -5;
  6,  4,  3,  2,  2,  1,  0,  0,  0, -1, -2, -2, -3, -4, -6;
...
		

Crossrefs

Row n has length A000041(n).
Row sums give A000004.

Extensions

Edited by N. J. A. Sloane, Sep 15 2020

A330373 Sum of all parts of all self-conjugate partitions of n.

Original entry on oeis.org

0, 1, 0, 3, 4, 5, 6, 7, 16, 18, 20, 22, 36, 39, 42, 60, 80, 85, 90, 114, 140, 168, 176, 207, 264, 300, 312, 378, 448, 493, 540, 620, 736, 825, 884, 1015, 1188, 1295, 1406, 1599, 1840, 2009, 2184, 2451, 2772, 3060, 3312, 3666, 4176, 4557, 4900, 5457, 6084, 6625, 7182, 7920, 8792, 9576, 10324, 11328, 12540
Offset: 0

Views

Author

Omar E. Pol, Dec 17 2019

Keywords

Comments

a(n) is the sum of all parts of all partitions of n whose Ferrers diagrams are symmetric.
The k-th part of a partition equals the number of parts >= k of its conjugate partition. Hence, the k-th part of a self-conjugate partition equals the number of parts >= k.
The k-th rank of a partition is the k-th part minus the number of parts >= k. Thus all ranks of a conjugate-partitions are zero. Therefore, a(n) is also the sum of all parts of all partitions of n whose n ranks are zero, n >= 1. For more information about the k-th ranks see A208478.

Examples

			For n = 10 there are only two partitions of 10 whose Ferrers diagram are symmetric, they are [5, 2, 1, 1, 1] and [4, 3, 2, 1] as shown below:
  * * * * *
  * *
  *
  *
  *
            * * * *
            * * *
            * *
            *
The sum of all parts of these partitions is 5 + 2 + 1 + 1 + 1 + 4 + 3 + 2 + 1 = 20, so a(10) = 20.
Also, in accordance with the first formula; a(10) = 2*10 = 20.
		

Crossrefs

Row sums of A330372.
For "k-th rank" of a partition see also: A181187, A208478, A208479, A208482, A208483, A330370.

Programs

  • PARI
    seq(n)={Vec(deriv(exp(sum(k=1, n, x^k/(k*(1 - (-x)^k)) + O(x*x^n)))), -(n+1))} \\ Andrew Howroyd, Dec 31 2019

Formula

a(n) = n*A000700(n).
a(n) = abs(n*A081362(n)).
a(n) = abs(A235324(n)), n >= 1.

A330372 Irregular triangle read by rows in which row n lists the self-conjugate partitions of n, ordered by their k-th largest parts, or 0 if such partitions does not exist.

Original entry on oeis.org

0, 1, 0, 2, 1, 2, 2, 3, 1, 1, 3, 2, 1, 4, 1, 1, 1, 4, 2, 1, 1, 3, 3, 2, 5, 1, 1, 1, 1, 3, 3, 3, 5, 2, 1, 1, 1, 4, 3, 2, 1, 6, 1, 1, 1, 1, 1, 4, 3, 3, 1, 6, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 4, 4, 2, 2, 7, 1, 1, 1, 1, 1, 1, 5, 3, 3, 1, 1, 4, 4, 3, 2
Offset: 0

Views

Author

Omar E. Pol, Dec 17 2019

Keywords

Comments

Row n lists the partitions of n whose Ferrers diagrams are symmetrics.
The k-th part of a partition equals the number of parts >= k of its conjugate partition. Hence, the k-th part of a self-conjugate partition equals the number of parts >= k.
The k-th rank of a partition is the k-th part minus the number of parts >= k. Thus all ranks of a conjugate-partitions are zero. Therefore row n lists the partitions of n whose n ranks are zero, n >= 1. For more information about the k-th ranks see A208478.

Examples

			Triangle begins (rows n = 0..10):
[0];
[1];
[0];
[2, 1];
[2, 2];
[3, 1, 1];
[3, 2, 1];
[4, 1, 1, 1];
[4, 2, 1, 1], [3, 3, 2];
[5, 1, 1, 1, 1], [3, 3, 3];
[5, 2, 1, 1, 1], [4, 3, 2, 1];
...
For n = 10 there are only two partitions of 10 whose Ferrers diagram are symmetric, they are [5, 2, 1, 1, 1] and [4, 3, 2, 1] as shown below:
  * * * * *
  * *
  *
  *
  *
            * * * *
            * * *
            * *
            *
So these partitions form the 10th row of triangle.
On the other hand, only two partitions of 10 have all their ranks equal to zero, they are [5, 2, 1, 1, 1] and [4, 3, 2, 1], so these partitions form the 10th row of triangle.
		

Crossrefs

Row n contains A000700(n) partitions.
The number of positive terms in row n is A067619(n).
Row sums give A330373.
Column 2 gives A000034.
Column 3 gives A000012.
For "k-th rank" of a partition see also: A181187, A208478, A208479, A208482, A208483, A330370.

Extensions

More terms from Freddy Barrera, Dec 31 2019

A330371 Irregular triangle read by rows T(n,m) in which row n lists all partitions of n ordered by the lower value of their k-th ranks, or by their k-th largest parts if all their k-th ranks are zeros, with k = n..1.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 5, 1, 1, 4, 3, 4, 2, 1, 3, 3, 1, 4, 1, 1, 1, 3, 2, 2, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 15 2019

Keywords

Comments

In this triangle the partitions of n are ordered by their n-th rank. The partitions that have the same n-th rank appears ordered by their (n-1)-st rank. The partitions that have the same n-th rank and the same (n-1)-st rank appears ordered by their (n-2)-nd rank, and so on. The partitions that have all k-ranks equal zero appears ordered by their largest parts, then by their second largest parts, then by their third largest parts, and so on.
Note that a partition and its conjugate partition both are equidistants from the center of the list of partitions of n.
For further information see A330370.
First differs from A036037, A181317, A330370 and A334439 at a(48).
First differs from A080577 at a(56).

Examples

			Triangle begins:
[1];
[2], [1,1];
[3], [2,1], [1,1,1];
[4], [3,1], [2,2], [2,1,1], [1,1,1,1];
[5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1];
[6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [2,2,2], [3,1,1,1], [2,2,1,1], ...
.
For n = 9 the 9th row of the triangle contains the partitions ordered as shown below:
---------------------------------------------------------------------------------
                                                                Ranks
          Conjugate
Label     with label    Partition                 k = 1  2  3  4  5  6  7  8  9
---------------------------------------------------------------------------------
   1         30         [9]                           8 -1 -1 -1 -1 -1 -1 -1 -1
   2         29         [8, 1]                        6  0 -1 -1 -1 -1 -1 -1  0
   3         28         [7, 2]                        5  0 -1 -1 -1 -1 -1  0  0
   4         27         [7, 1, 1]                     4  0  0 -1 -1 -1 -1  0  0
   5         26         [6, 3]                        4  1 -2 -1 -1 -1  0  0  0
   6         25         [6, 2, 1]                     3  0  0 -1 -1 -1  0  0  0
   7         24         [6, 1, 1, 1]                  2  0  0  0 -1 -1  0  0  0
   8         23         [5, 4]                        3  2 -2 -2 -1  0  0  0  0
   9         22         [5, 3, 1]                     2  1 -1 -1 -1  0  0  0  0
  10         21         [5, 2, 2]                     2 -1  1 -1 -1  0  0  0  0
  11         20         [5, 2, 1, 1]                  1  0  0  0 -1  0  0  0  0
  12         19         [4, 4, 1]                     1  2 -1 -2  0  0  0  0  0
  13         18         [4, 3, 2]                     1  0  0 -1  0  0  0  0  0
  14         17         [4, 3, 1, 1]                  0  1 -1  0  0  0  0  0  0
  15  (self-conjugate)  [5, 1, 1, 1, 1]  All zeros -> 0  0  0  0  0  0  0  0  0
  16  (self-conjugate)  [3, 3, 3]        All zeros -> 0  0  0  0  0  0  0  0  0
  17         14         [4, 2, 2, 1]                  0 -1  1  0  0  0  0  0  0
  18         13         [3, 3, 2, 1]                 -1  0  0  1  0  0  0  0  0
  19         12         [3, 2, 2, 2]                 -1 -2  1  2  0  0  0  0  0
  20         11         [4, 2, 1, 1, 1]              -1  0  0  0  1  0  0  0  0
  21         10         [3, 3, 1, 1, 1]              -2  1 -1  1  1  0  0  0  0
  22          9         [3, 2, 2, 1, 1]              -2 -1  1  1  1  0  0  0  0
  23          8         [2, 2, 2, 2, 1]              -3 -2  2  2  1  0  0  0  0
  24          7         [4, 1, 1, 1, 1, 1]           -2  0  0  0  1  1  0  0  0
  25          6         [3, 2, 1, 1, 1, 1]           -3  0  0  1  1  1  0  0  0
  26          5         [2, 2, 2, 1, 1, 1]           -4 -1  2  1  1  1  0  0  0
  27          4         [3, 1, 1, 1, 1, 1, 1]        -4  0  0  1  1  1  1  0  0
  28          3         [2, 2, 1, 1, 1, 1, 1]        -5  0  1  1  1  1  1  0  0
  29          2         [2, 1, 1, 1, 1, 1, 1, 1]     -6  0  1  1  1  1  1  1  0
  30          1         [1, 1, 1, 1, 1, 1, 1, 1, 1]  -8  1  1  1  1  1  1  1  1
		

Crossrefs

Another version of A330370.
Row n contains A000041(n) partitions.
Row n has length A006128(n).
The sum of n-th row is A066186(n).
For the "k-th rank" see also: A181187, A208478, A208479, A208482, A208483.
Showing 1-6 of 6 results.