cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330409 Semiprimes of the form p(6p - 1).

Original entry on oeis.org

22, 51, 145, 287, 1717, 2147, 3151, 5017, 11051, 13207, 16801, 20827, 26867, 63551, 68587, 71177, 76501, 96647, 112477, 147737, 159251, 232657, 237407, 308947, 314417, 342487, 433897, 480251, 587501, 602617, 722107, 772927, 834401, 861467, 879751, 907537, 945257, 1155887, 1177051
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2019

Keywords

Examples

			A158015(1) = 2 is the smallest prime p such that 6p - 1 = 12 - 1 = 11 is also prime, whence a(1) = A049452(2) = 2*(6*2 - 1) = 22.
prime(5) = 11 is the smallest prime not in A024898 or A158015, because 6p - 1 is not a prime, therefore A049452(11) = 11*(6*11 - 1) is not in the sequence, and idem for A049452(13).
But prime(7) = 17 is in A024898 and A158015, so a(5) = A024898(A158015(5)) = A024898(17) = 17*(6*17 - 1).
		

Crossrefs

Cf. A024898 (6n-1 is prime), A158015 (primes), A049452 = {n(6n-1)}.
Complement of A255584 = A033570(A130800) (semiprimes (2n+1)(3n+1)) in A245365 (primes of the form n(3n-1)/2).

Programs

  • Mathematica
    Select[Table[p(6p-1),{p,500}],PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 27 2022 *)
  • PARI
    [p*(6*p-1) | p<-primes(99), isprime(6*p-1)]

Formula

a(n) = A049452(A158015(n)) = p(6p - 1) with p = A158015(n).