A330426 Primes P where the distance to the nearest prime is greater than 2*log(P).
211, 2179, 2503, 3967, 4177, 7369, 7393, 11027, 11657, 14107, 16033, 16787, 18013, 18617, 18637, 18839, 19661, 21247, 23719, 24281, 29101, 32749, 33247, 33679, 33997, 37747, 38501, 40063, 40387, 42533, 42611, 44417, 46957, 51109, 51383, 53479, 54217, 55291, 55763
Offset: 1
Keywords
Examples
P = 211 is a term because 199 + 2*log(211) < 211 < 223 - 2*log(211). P = 199 is not a term because 197 + 2*log(199) > 199.
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Magma
f:=func
; [p:p in PrimesUpTo(56000)|f(p)];// Marius A. Burtea, Dec 18 2019
-
Maple
q:= 3: state:= false: count:= 0: Res:= NULL: while count < 100 do p:= nextprime(q); newstate:= is(p-q > 2*log(q)); if state and newstate then count:= count+1; Res:= Res, q; fi; q:= p; state:= newstate; od: Res; # Robert Israel, Dec 18 2019
-
Mathematica
lst={};Do[a=Prime[n];If[Min[Abs[a-NextPrime[a,{-1,1}]]]>2*Log[a],AppendTo[lst,a]],{n,1,10000}];lst (* Metin Sariyar, Dec 15 2019 *) (* Second program: *) Select[Prime@ Range[10^4], Min@ Abs[# - NextPrime[#, {-1, 1}]] > 2 Log[#] &] (* Michael De Vlieger, Dec 15 2019 *)
Extensions
More terms from Metin Sariyar, Dec 15 2019
Comments