A330437 Length of trajectory of n under the map n -> n - 1 + n/gpf(n) or 0 if no fixed point is reached, where gpf(n) is the greatest prime factor of n.
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 5, 4, 2, 1, 4, 1, 2, 4, 4, 3, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 1, 3, 2, 4, 3, 2, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2, 2, 2, 1, 4, 2, 2, 1, 4, 2, 3, 2, 4, 1, 2, 2, 4, 4, 4, 3, 2, 1, 3, 2, 4
Offset: 1
Keywords
Examples
For n = 26 the trajectory is (26, 27, 35, 39, 41) so a(26) = 5.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
g:= n -> n - 1 + n/max(numtheory:-factorset(n)): f:= proc(n) option remember; if isprime(n) then 1 else 1+ procname(g(n)) fi end proc: f(1):= 1: map(f, [$1..200]); # Robert Israel, May 01 2020
-
Mathematica
Clear[f,it,order,seq]; f[n_]:=f[n]=n-1+n/FactorInteger[n][[-1]][[1]]; it[k_,n_]:=it[k,n]=f[it[k,n-1]]; it[k_,1]=k; order[n_]:=order[n]=SelectFirst[Range[1,100], it[n,#]==it[n,#+1]&]; Print[order/@Range[1,100]];
-
PARI
apply( {a(n,c=1)=n>1&&while(n
M. F. Hasler, Feb 19 2020
Formula
a(p) = 1 for any prime number p.
Comments