cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330437 Length of trajectory of n under the map n -> n - 1 + n/gpf(n) or 0 if no fixed point is reached, where gpf(n) is the greatest prime factor of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 5, 4, 2, 1, 4, 1, 2, 4, 4, 3, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 1, 3, 2, 4, 3, 2, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2, 2, 2, 1, 4, 2, 2, 1, 4, 2, 3, 2, 4, 1, 2, 2, 4, 4, 4, 3, 2, 1, 3, 2, 4
Offset: 1

Views

Author

Elijah Beregovsky, Feb 16 2020

Keywords

Comments

The table of trajectories of n under is given in A329288.
All fixed points, besides 1, are prime.
Conjecture: every number appears in the sequence infinitely many times.
Conjecture: all terms are nonzero, i.e., every trajectory eventually reaches a prime.

Examples

			For n = 26 the trajectory is (26, 27, 35, 39, 41) so a(26) = 5.
		

Crossrefs

Cf. A006530 (greatest prime factor), A329288, A330704 (greedy inverse).

Programs

  • Maple
    g:= n -> n - 1 + n/max(numtheory:-factorset(n)):
    f:= proc(n) option remember;
        if isprime(n) then 1 else 1+ procname(g(n)) fi
    end proc:
    f(1):= 1:
    map(f, [$1..200]); # Robert Israel, May 01 2020
  • Mathematica
    Clear[f,it,order,seq]; f[n_]:=f[n]=n-1+n/FactorInteger[n][[-1]][[1]]; it[k_,n_]:=it[k,n]=f[it[k,n-1]]; it[k_,1]=k; order[n_]:=order[n]=SelectFirst[Range[1,100], it[n,#]==it[n,#+1]&]; Print[order/@Range[1,100]];
  • PARI
    apply( {a(n,c=1)=n>1&&while(nM. F. Hasler, Feb 19 2020

Formula

a(p) = 1 for any prime number p.