cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330440 Numbers k such that A316774(k) != A316774(j) for all 0 <= j < k.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 11, 14, 22, 28, 32, 42, 45, 48, 68, 71, 77, 89, 92, 95, 108, 115, 140, 149, 194, 216, 254, 257, 260, 263, 268, 277, 295, 298, 310, 340, 346, 362, 365, 424, 431, 462, 476, 479, 486, 539, 560, 576, 579, 657, 692, 707, 754, 757, 794, 797, 928
Offset: 1

Views

Author

Alois P. Heinz, Dec 14 2019

Keywords

Comments

This is a sorted version of A316905.
List of indices k such that A330439(k) = 1.

Crossrefs

Column k=1 of A330587.

Programs

  • Maple
    b:= proc() 0 end:
    g:= proc(n) option remember; local t;
          t:= `if`(n<2, n, b(g(n-1))+b(g(n-2)));
          b(t):= b(t)+1; t
        end:
    f:= proc(n) option remember; b(g(n)) end:
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, -1, a(n-1)) while f(k)<>1 do od; k
        end:
    seq(a(n), n=1..80);
  • Mathematica
    b[_] = 0;
    g[n_] := g[n] = Module[{t},
         t = If[n < 2, n, b[g[n - 1]] + b[g[n - 2]]];
         b[t]++; t];
    f[n_] := f[n] = b[g[n]];
    a[n_] := a[n] = Module[{k}, For[k = 1 +
         If[n == 1, -1, a[n - 1]], f[k] != 1, k++]; k];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz *)

Formula

{ k >= 0 : A330439(k) = 1 }.