A330446 Composite numbers k such that 2^(k-1) == - lambda(k) (mod k), where lambda is the Carmichael lambda function (A002322).
140, 1054, 1068, 4844, 11209, 19856, 24949, 28390, 78184, 423796, 769516, 4283544, 5935168, 13116053, 122189752, 441252296, 528500308, 636697392, 669629030, 669778082, 1228748591
Offset: 1
Examples
140 is a term since it is composite and 2^(140-1) == 140 - lambda(140) == 128 (mod 140).
Programs
-
Mathematica
Select[Range[10^6], CompositeQ[#] && PowerMod[2, # - 1, #] == # - CarmichaelLambda[#] &]
Comments