cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330447 a(n) is the smallest index k such that {0,1,2,...,n} is a subset of { A316774(j) : 0 <= j <= k }.

Original entry on oeis.org

0, 1, 2, 5, 5, 8, 11, 22, 22, 32, 32, 42, 48, 48, 68, 71, 77, 89, 108, 115, 115, 140, 140, 149, 216, 268, 268, 268, 310, 310, 310, 340, 362, 362, 362, 362, 362, 476, 476, 476, 476, 560, 560, 560, 560, 560, 576, 576, 579, 692, 692, 707, 754, 794, 794, 797, 928
Offset: 0

Views

Author

Alois P. Heinz, Dec 15 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc() 0 end:
    g:= proc(n) option remember; local t;
          t:= `if`(n<2, n, b(g(n-1))+b(g(n-2)));
          b(t):= b(t)+1; t
        end:
    f:= proc() local t, a; t, a:= -1, proc() -1 end;
          proc(n) local h;
            while a(n) = -1 do
              t:= t+1; h:= g(t);
              if a(h) = -1 then a(h):= t fi
            od; a(n)
          end
        end():
    a:= proc(n) option remember; `if`(n<0, 0,
          max(a(n-1), f(n)))
        end:
    seq(a(n), n=0..100);
  • Mathematica
    b[_] = 0;
    g[n_] := g[n] = Module[{t}, t = If[n < 2, n, b[g[n - 1]] + b[g[n - 2]]]; b[t] = b[t] + 1; t];
    f[n_] := Module[{t, a}, t = -1; a[_] = -1; Module[{h}, While[a[n] == -1, t = t + 1; h = g[t]; If[a[h] == -1, a[h] = t]]; a[n]]];
    a[n_] := a[n] = If[n < 0, 0, Max[a[n - 1], f[n]]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 13 2022, after Alois P. Heinz *)

Formula

a(n) = max_{0 <= j <= n} A316905(j).
a(n) >= A316905(n).
a(n) <= a(n+1).