cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330562 Positive numbers k with property that if d is any nonzero digit of k then k mod d is also a digit of k.

Original entry on oeis.org

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 109, 110, 120, 130, 140, 150, 190, 200, 201, 202, 204, 206, 208, 210, 220, 230, 240, 250, 260, 280, 290, 300, 301, 302, 303, 306, 309, 310, 320, 330, 360, 390, 400, 401, 402, 404, 408, 420, 440, 460, 480, 500, 501, 502, 504, 505, 510, 520, 540, 550, 590
Offset: 1

Views

Author

N. J. A. Sloane, Dec 31 2019, following a suggestion from Eric Angelini

Keywords

Comments

Theorem: k must have a zero digit.
Proof: If not, let s be the smallest digit in k. Then d = (k mod s) is a digit of k, and d < s. Contradiction.
Pandigital numbers (A171102) are necessarily an infinite subset. - Hans Havermann, Jan 02 2020

Examples

			401 is a term since 401 mod 4 = 1 and 401 mod 1 = 0, and 1 and 0 are both digits of 401.
		

Crossrefs

Cf. A330563 (primes), A171102 (pandigital subset).

Programs

  • Magma
    [k:k in [1..600]| forall{c:c in Set(Intseq(k)) diff {0}| k mod c in Intseq(k)}]; // Marius A. Burtea, Jan 01 2020
    
  • Mathematica
    Select[Range@ 600, Function[{k, d}, AllTrue[DeleteCases[d, 0], ! FreeQ[d, Mod[k, #]] &]] @@ {#, IntegerDigits[#]} &] (* Michael De Vlieger, Jan 01 2020 *)
  • PARI
    is(k) = my (d=Set(digits(k))); for (i=1, #d, if (d[i] && setsearch(d, k%d[i])==0, return (0))); return (1) \\ Rémy Sigrist, Jan 01 2020
    
  • Python
    def ok(n): s = set(map(int, str(n))); return all(n%d in s for d in s-{0})
    print([k for k in range(1, 600) if ok(k)]) # Michael S. Branicky, Dec 23 2024