A330562 Positive numbers k with property that if d is any nonzero digit of k then k mod d is also a digit of k.
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 109, 110, 120, 130, 140, 150, 190, 200, 201, 202, 204, 206, 208, 210, 220, 230, 240, 250, 260, 280, 290, 300, 301, 302, 303, 306, 309, 310, 320, 330, 360, 390, 400, 401, 402, 404, 408, 420, 440, 460, 480, 500, 501, 502, 504, 505, 510, 520, 540, 550, 590
Offset: 1
Examples
401 is a term since 401 mod 4 = 1 and 401 mod 1 = 0, and 1 and 0 are both digits of 401.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..25000
Programs
-
Magma
[k:k in [1..600]| forall{c:c in Set(Intseq(k)) diff {0}| k mod c in Intseq(k)}]; // Marius A. Burtea, Jan 01 2020
-
Mathematica
Select[Range@ 600, Function[{k, d}, AllTrue[DeleteCases[d, 0], ! FreeQ[d, Mod[k, #]] &]] @@ {#, IntegerDigits[#]} &] (* Michael De Vlieger, Jan 01 2020 *)
-
PARI
is(k) = my (d=Set(digits(k))); for (i=1, #d, if (d[i] && setsearch(d, k%d[i])==0, return (0))); return (1) \\ Rémy Sigrist, Jan 01 2020
-
Python
def ok(n): s = set(map(int, str(n))); return all(n%d in s for d in s-{0}) print([k for k in range(1, 600) if ok(k)]) # Michael S. Branicky, Dec 23 2024
Comments