cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330588 a(n) is the first index m such that A330439(m) = n.

Original entry on oeis.org

0, 3, 6, 13, 21, 23, 27, 33, 46, 67, 81, 104, 107, 114, 129, 166, 169, 172, 193, 261, 267, 276, 287, 311, 373, 430, 457, 478, 485, 590, 596, 656, 691, 768, 789, 796, 873, 941, 969, 1047, 1093, 1149, 1170, 1239, 1303, 1349, 1491, 1533, 1555, 1567, 1805, 1808
Offset: 1

Views

Author

Alois P. Heinz, Dec 18 2019

Keywords

Crossrefs

Row n=1 of A330587.

Programs

  • Maple
    b:= proc() 0 end:
    g:= proc(n) option remember; local t;
          t:= `if`(n<2, n, b(g(n-1))+b(g(n-2)));
          b(t):= b(t)+1; t
        end:
    f:= proc(n) option remember; b(g(n)) end:
    a:= proc() local l, t; t, l:= -1, proc() -1 end;
          proc(k) local h;
            while l(k)<0 do t:= t+1; h:= f(t);
              if l(h)<0 then l(h):= t fi
            od: l(k)
          end
        end():
    seq(a(n), n=1..60);
  • Mathematica
    b[_] = 0;
    g[n_] := g[n] = Module[{t}, t = If[n < 2, n, b[g[n-1]] + b[g[n-2]]]; b[t]++; t];
    f[n_] := f[n] = b[g[n]];
    A[n_, k_] := Module[{l, t = -1, h}, l[_] = {}; While[Length[l[k]] < n, t++; h = f[t]; AppendTo[l[h], t]]; l[k][[n]]];
    a[k_] := A[1, k];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz *)