cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330601 Array T read by antidiagonals: T(m,n) is the number of lattice walks from (0,0) to (m,n) using one step from {(3,0), (2,1), (1,2), (0,3)} and all other steps from {(1,0), (0,1)}.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4, 4, 4, 2, 3, 9, 12, 12, 9, 3, 4, 16, 28, 32, 28, 16, 4, 5, 25, 55, 75, 75, 55, 25, 5, 6, 36, 96, 156, 180, 156, 96, 36, 6, 7, 49, 154, 294, 392, 392, 294, 154, 49, 7, 8, 64, 232, 512, 784, 896, 784, 512, 232, 64, 8, 9, 81, 333, 837, 1458, 1890, 1890, 1458, 837, 333, 81, 9
Offset: 0

Views

Author

Steven Klee, Dec 19 2019

Keywords

Examples

			For (m,n) = (3,1), there are T(3,1) = 4 paths:
(3,0), (0,1)
(0,1), (3,0)
(2,1), (1,0)
(1,0), (2,1).
Array T(m,n) begins
n/m 0   1    2     3     4      5      6      7       8       9
0   0   0    0     1     2      3      4      5       6       7
1   0   0    1     4     9     16     25     36      49      64
2   0   1    4    12    28     55     96    154     232     333
3   1   4   12    32    75    156    294    512     837    1300
4   2   9   28    75   180    392    784   1458    2550    4235
5   3  16   55   156   392    896   1890   3720    6897   12144
6   4  25   96   294   784   1890   4200   8712   17028   31603
7   5  36  154   512  1458   3720   8712  19008   39039   76076
8   6  49  232   837  2550   6897  17028  39039   84084  171600
9   7  64  333  1300  4235  12144  31603  76076  171600  366080
		

Crossrefs

T(m,0) is A000027 for m >= 2.
T(m,1) is A000290 for m >= 1.
T(m,2) is A006000.

Programs

  • Sage
    def T(m,n):
        return (m+n-2)*(binomial(m+n-2, m) + binomial(m+n-2, n))

Formula

T(m,n) = (m+n-2)*(binomial(m+n-2,m) + binomial(m+n-2,n)).