A330606 Numbers k such that k*d(k) and sigma(k) are relatively prime, where d(k) is the number of divisors of k (A000005) and sigma(k) is their sum (A000203).
1, 2, 4, 8, 9, 16, 25, 36, 64, 81, 100, 121, 128, 144, 225, 256, 289, 324, 400, 484, 512, 529, 576, 625, 729, 841, 900, 1024, 1089, 1156, 1250, 1296, 1600, 1681, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2809, 3025, 3364, 3481, 3600, 4096, 4356, 4624, 4761
Offset: 1
Keywords
References
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 75.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jean-Marie De Koninck and Imre Kátai, On an estimate of Kanold, Int. J. Math. Anal., Vol. 5, No. 8 (2007), pp. 1-12.
- Hans-Joachim Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl II, Mathematische Annalen, Vol. 134, No. 3 (1958), pp. 225-231.
Crossrefs
Programs
-
Magma
[k:k in [1..5000]| Gcd(k*NumberOfDivisors(k),DivisorSigma(1,k)) eq 1]; // Marius A. Burtea, Dec 20 2019
-
Mathematica
Select[Range[10^4], CoprimeQ[# * DivisorSigma[0, #], DivisorSigma[1, #]] &]
Comments