cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330606 Numbers k such that k*d(k) and sigma(k) are relatively prime, where d(k) is the number of divisors of k (A000005) and sigma(k) is their sum (A000203).

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 25, 36, 64, 81, 100, 121, 128, 144, 225, 256, 289, 324, 400, 484, 512, 529, 576, 625, 729, 841, 900, 1024, 1089, 1156, 1250, 1296, 1600, 1681, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2809, 3025, 3364, 3481, 3600, 4096, 4356, 4624, 4761
Offset: 1

Views

Author

Amiram Eldar, Dec 20 2019

Keywords

Comments

If p is prime and p == 2 (mod 3) then p^2 is in the sequence.
Let E(x) = #{n | a(n) <= x} be the number of terms of this sequence up to x. Kanold proved that there are two constants 0 < c1 < c2 and a positive number x_0 such that c1 < E(x)/sqrt(x/log(x)) < c2 for x > x_0. De Koninck and Kátai proved that there is a positive constant c such that E(x) = c * (1 + o(1)) * sqrt(x/log(x)).
Apparently most of the terms are squares or powers of 2. Terms that are not included 1250, 4802, 31250, 57122, ...
Numbers k such that A099377(k) = A038040(k) and A099378(k) = A000203(k). - Amiram Eldar, Nov 02 2021

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 75.

Crossrefs

Programs

  • Magma
    [k:k in [1..5000]| Gcd(k*NumberOfDivisors(k),DivisorSigma(1,k)) eq 1]; // Marius A. Burtea, Dec 20 2019
  • Mathematica
    Select[Range[10^4], CoprimeQ[# * DivisorSigma[0, #], DivisorSigma[1, #]] &]