A330609 T(n, k) = binomial(n-k-1, k-1)*(n-k)!/k! for n >= 0 and 0 <= k <= floor(n/2). Irregular triangle read by rows.
1, 0, 0, 1, 0, 2, 0, 6, 1, 0, 24, 6, 0, 120, 36, 1, 0, 720, 240, 12, 0, 5040, 1800, 120, 1, 0, 40320, 15120, 1200, 20, 0, 362880, 141120, 12600, 300, 1, 0, 3628800, 1451520, 141120, 4200, 30, 0, 39916800, 16329600, 1693440, 58800, 630, 1
Offset: 0
Examples
Triangle begins: [0] 1 [1] 0 [2] 0, 1 [3] 0, 2 [4] 0, 6, 1 [5] 0, 24, 6 [6] 0, 120, 36, 1 [7] 0, 720, 240, 12 [8] 0, 5040, 1800, 120, 1 [9] 0, 40320, 15120, 1200, 20
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
Maple
T := (n, k) -> binomial(n-k-1, k-1)*(n-k)!/k!: seq(seq(T(n, k), k=0..floor(n/2)), n=0..12); # Alternative: T := proc(n, k) option remember; if (n=0 and k=0) or (n=2 and k=1) then 1 elif (k < 1) or (k > ceil(n/2)) then 0 else (n-1)*T(n-1, k) + T(n-2, k-1) fi end: seq(seq(T(n, k), k=0..n/2), n=0..12);
-
Mathematica
Table[Binomial[n-k-1,k-1] (n-k)!/k!,{n,0,20},{k,0,Floor[n/2]}]//Flatten (* Harvey P. Dale, Oct 19 2021 *)
Formula
T(0,0) = T(2,1) = 1. If k < 1 or k > ceiling(n/2) then T(n,k) = 0. Otherwise:
T(n, k) = (n-1)*T(n-1, k) + T(n-2, k-1)
Comments