A330628 Number of series/singleton-reduced rooted trees on strongly normal multisets of size n whose leaves are sets (not necessarily disjoint).
1, 1, 1, 5, 42, 423, 5458, 80926
Offset: 0
Examples
The a(4) = 42 trees: {{1}{1}{12}} {{12}{12}} {{1}{123}} {1234} {{1}{{1}{12}}} {{1}{2}{12}} {{12}{13}} {{1}{234}} {{1}{{2}{12}}} {{1}{1}{23}} {{12}{34}} {{2}{{1}{12}}} {{1}{2}{13}} {{13}{24}} {{1}{3}{12}} {{14}{23}} {{1}{{1}{23}}} {{2}{134}} {{1}{{2}{13}}} {{3}{124}} {{1}{{3}{12}}} {{4}{123}} {{2}{{1}{13}}} {{1}{2}{34}} {{3}{{1}{12}}} {{1}{3}{24}} {{1}{4}{23}} {{2}{3}{14}} {{2}{4}{13}} {{3}{4}{12}} {{1}{{2}{34}}} {{1}{{3}{24}}} {{1}{{4}{23}}} {{2}{{1}{34}}} {{2}{{3}{14}}} {{2}{{4}{13}}} {{3}{{1}{24}}} {{3}{{2}{14}}} {{3}{{4}{12}}} {{4}{{1}{23}}} {{4}{{2}{13}}} {{4}{{3}{12}}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m]; Table[Sum[Length[Select[ssrtrees[s],FreeQ[#,{_,x_Integer,x_Integer,_}]&]],{s,strnorm[n]}],{n,0,5}]
Comments