cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330633 The concatenation of the products of every pair of consecutive digits of n (with a(n) = 0 for 0 <= n <= 9).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0
Offset: 0

Views

Author

Scott R. Shannon, Dec 21 2019

Keywords

Comments

If the decimal expansion of n is d_1 d_2 ... d_k then a(n) is the number formed by concatenating the decimal numbers d_1*d_2, d_2*d_3, ..., d_{k-1}*d_k.
Due to the fact that for two digit numbers the sequence is simply the multiplication of those two numbers, this sequence matches numerous others for the first 100 terms. See the sequences in the cross references. The terms begin to differ beyond n = 100.

Crossrefs

Programs

  • Maple
    read("transforms") :
    A330633 := proc(n)
        local dgs,L,i ;
        if n <=9 then
            0;
        else
            dgs := ListTools[Reverse](convert(n,base,10)) ;
            L := [] ;
            for i from 2 to nops(dgs) do
                L := [op(L), op(i-1,dgs)*op(i,dgs)] ;
            end do:
            digcatL(L) ;
        end if;
    end proc: # R. J. Mathar, Jan 11 2020
  • Mathematica
    Array[If[Or[# == 0, IntegerLength@ # == 1], 0, FromDigits[Join @@ IntegerDigits[Times @@ # & /@ Partition[IntegerDigits@ #, 2, 1]]]] &, 81, 0] (* Michael De Vlieger, Dec 23 2019 *)
  • PARI
    a(n) = my(d=digits(n), s="0"); for (k=1, #d-1, s=concat(s, d[k]*d[k+1])); eval(s); \\ Michel Marcus, Apr 28 2020

Formula

a(10) = 0 as 1 * 0 = 0.
a(29) = 18 as 2 * 9 = 18.
a(100) = 0 as 1 * 0 = 0 and 0 = 0 = 0, and '00' is reduced to 0.
a(110) = 10 as 1 * 1 = 1 and 1 * 0 = 0. This is the first term that differs from A007954 and A171765, the multiplication of all digits of n.