A330635 Array read by rows: T(n,k) is the number of solutions to the equation Sum_{i=1..n} x_i^2 == k (mod 6) with x_i in 0..5, where n >= 0 and 0 <= k <= 5.
1, 0, 0, 0, 0, 0, 1, 2, 0, 1, 2, 0, 2, 8, 8, 2, 8, 8, 36, 24, 48, 36, 24, 48, 264, 192, 192, 264, 192, 192, 1296, 1440, 1152, 1296, 1440, 1152, 7200, 8064, 8064, 7200, 8064, 8064, 46656, 44928, 48384, 46656, 44928, 48384, 286848, 276480, 276480, 286848, 276480, 276480
Offset: 0
Examples
Array T(n,k) (with rows n >= 0 and columns 0 <= k <= 5) begins as follows: 1, 0, 0, 0, 0, 0; 1, 2, 0, 1, 2, 0; 2, 8, 8, 2, 8, 8; 36, 24, 48, 36, 24, 48; 264, 192, 192, 264, 192, 192; 1296, 1440, 1152, 1296, 1440, 1152; 7200, 8064, 8064, 7200, 8064, 8064; ... T(n=2,k=0) = 2 because we have the following solutions (x_1, x_2) to the equation x_1^2 + x_2^2 == 0 (mod 6) (with x_1, x_2 in 0..5): (0,0) and (3,3). T(n=2,k=1) = 8 because we have the following solutions (x_1, x_2) to the equation x_1^2 + x_2^2 == 1 (mod 6) (with x_1, x_2 in 0..5): (0,1), (0,5), (1,0), (2,3), (3,2), (3,4), (4,3), and (5,0). T(n=2,k=2) = 8 because we have the following solutions (x_1, x_2) to the equation x_1^2 + x_2^2 == 2 (mod 6) (with x_1, x_2 in 0..5): (1,1), (1,5), (2,2), (2,4), (4,2), (4,4), (5,1), and (5,5). T(n=2,k=3) = 2 because we have the following solutions (x_1, x_2) to the equation x_1^2 + x_2^2 == 3 (mod 6) (with x_1, x_2 in 0..5): (0,3) and (3,0). T(n=2,k=4) = 8 because we have the following solutions (x_1, x_2) to the equation x_1^2 + x_2^2 == 4 (mod 6) (with x_1, x_2 in 0..5): (0,2), (0,4), (1,3), (2,0), (3,1), (3,5), (4,0), and (5,3). T(n=2,k=5) = 8 because we have the following solutions (x_1, x_2) to the equation x_1^2 + x_2^2 == 5 (mod 6) (with x_1, x_2 in 0..5): (1,2), (1,4), (2,1), (2,5), (4,1), (4,5), (5,2), and (5,4).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,6,0,0,0,0,0,-12,0,0,0,0,0,72).
Programs
-
Maple
with(LinearAlgebra); v := proc(n) local M, v0; M := Matrix([[1,0,2,1,0,2],[2,1,0,2,1,0],[0,2,1,0,2,1],[1,0,2,1,0,2],[2,1,0,2,1,0],[0,2,1,0,2,1]]); v0 := Matrix([[1], [0], [0], [0], [0], [0]]); if n = 0 then v0; else MatrixMatrixMultiply(MatrixPower(M, n), v0); end if; end proc; seq(seq(v(n)[k, 1], k = 1..6), n = 0..10);
-
PARI
Vec((1 - 5*x^6 + 2*x^7 + x^9 + 2*x^10 + 8*x^12 - 4*x^13 + 8*x^14 - 4*x^15 - 4*x^16 + 8*x^17 - 36*x^18 + 36*x^21) / ((1 - 6*x^6)*(1 + 12*x^12)) + O(x^60)) \\ Colin Barker, Jan 17 2020
Formula
T(n,k) = T(n, k+3) for k = 0,1,2 and n >= 0.
T(n,k) = 6*T(n-1,k) - 12*T(n-2,k) + 72*T(n-3,k) for n >= 4 and each k in 0..5. (This is not true for k = 0 or 3 when n = 3 because of the presence of z in the minimal polynomial for M.)
Sum_{k=0..5} T(n,k) = 6^n.
T(n,k) = -12*T(n-2,k) + 8*6^(n-2) for n >= 3 and k = 0..5.
T(n,k) ~ 6^(n-1) for each k in 0..5.
From Colin Barker, Jan 12 2020: (Start)
If we consider this array as a single sequence (a(n): n >= 0), then:
a(n) = 6*a(n-6) - 12*a(n-12) + 72*a(n-18) for n > 21.
G.f.: (1 - 5*x^6 + 2*x^7 + x^9 + 2*x^10 + 8*x^12 - 4*x^13 + 8*x^14 - 4*x^15 - 4*x^16 + 8*x^17 - 36*x^18 + 36*x^21) / ((1 - 6*x^6)*(1 + 12*x^12)).
(End)
Comments