cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330642 a(n) is the number of partitions of n with Durfee square of size <= 4.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1957, 2434, 3005, 3708, 4545, 5568, 6779, 8245, 9974, 12046, 14478, 17372, 20747, 24732, 29360, 34782, 41045, 48337, 56716, 66410, 77498, 90247, 104763, 121366, 140181, 161590, 185755
Offset: 0

Views

Author

Omar E. Pol, Dec 24 2019

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = Vec(sum(k=0, 4, x^(k^2)/prod(j=1, k, 1 - x^j)^2) + O(x*x^n)) \\ Andrew Howroyd, Dec 27 2024

Formula

a(n) = A000041(n), 0 <= n <= 24.
a(n) = A330641(n), 0 <= n <= 15.
a(n) = A330641(n) + A117486(n-16), n >= 16.
a(n) = n + A006918(n-3) + A117485(n) + A117486(n-16), n >= 16.
From Colin Barker, Jan 01 2020: (Start)
G.f.: (1 - x - x^2 + 3*x^5 - x^7 - 2*x^8 - 2*x^9 + 3*x^10 + x^11 + x^12 - x^13 - 2*x^14 + x^15 + x^17 - x^19 + x^20) / ((1 - x)^8*(1 + x)^4*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) - 4*a(n-5) + 4*a(n-6) + 4*a(n-7) + 2*a(n-8) - 10*a(n-10) + 2*a(n-12) + 4*a(n-13) + 4*a(n-14) - 4*a(n-15) - a(n-16) - 2*a(n-17) + a(n-18) + 2*a(n-19) - a(n-20) for n>20.
(End)
G.f.: Sum_{k=0..4} x^(k^2)/(Product_{j=1..k} (1 - x^j))^2. - Andrew Howroyd, Dec 27 2024