cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330651 a(n) = n^4 + 3*n^3 + 2*n^2 - 2*n.

Original entry on oeis.org

0, 4, 44, 174, 472, 1040, 2004, 3514, 5744, 8892, 13180, 18854, 26184, 35464, 47012, 61170, 78304, 98804, 123084, 151582, 184760, 223104, 267124, 317354, 374352, 438700, 511004, 591894, 682024, 782072, 892740, 1014754, 1148864, 1295844
Offset: 0

Views

Author

Ed Pegg Jr, Jan 15 2020

Keywords

Comments

a(n)/A269657(n) gives unforgeable word approximations (A003000) with increasing accuracy, as follows: 4/15, 44/79, 174/253, ... ~ 0.26 (A242430), 0.5569 (A019308), 0.68774 (A019309), 0.8055770, 0.83674321, 0.85937882, 0.87654509, 0.89000100, 0.9008270111, ....

Crossrefs

Programs

  • Maple
    A330651 := n -> (((n+3)*n+2)*n-2)*n; # M. F. Hasler, Feb 29 2020
  • Mathematica
    Numerator/@Table[(-2 n+2 n^2+3 n^3+n^4)/(1+3 n+6 n^2+4 n^3+n^4),{n,0,33}] (* Ed Pegg Jr, Jan 15 2020 *)
  • PARI
    Vec(2*x*(2 + 12*x - 3*x^2 + x^3) / (1 - x)^5 + O(x^40),-40) \\ Colin Barker, Jan 15 2020
    
  • PARI
    apply( {A330651(n)=(((n+3)*n+2)*n-2)*n}, [0..44]) \\ M. F. Hasler, Feb 29 2020

Formula

From Colin Barker, Jan 15 2020: (Start)
G.f.: 2*x*(2 + 12*x - 3*x^2 + x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: exp(x)*x*(4 + 18*x + 9*x^2 + x^3). - Stefano Spezia, Feb 03 2020