A330655 Number of balanced reduced multisystems of weight n whose atoms cover an initial interval of positive integers.
1, 1, 2, 12, 138, 2652, 78106, 3256404, 182463296, 13219108288, 1202200963522, 134070195402644, 17989233145940910, 2858771262108762492, 530972857546678902490, 113965195745030648131036, 27991663753030583516229824, 7800669355870672032684666900, 2448021231611414334414904013956
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 12 multisystems: {} {1} {1,1} {1,1,1} {1,2} {1,1,2} {1,2,2} {1,2,3} {{1},{1,1}} {{1},{1,2}} {{1},{2,2}} {{1},{2,3}} {{2},{1,1}} {{2},{1,2}} {{2},{1,3}} {{3},{1,2}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Row sums of A330776.
The unlabeled version is A330474.
The strongly normal case is A330475.
The tree version is A330654.
The maximum-depth case is A330676.
The case where the atoms are all different is A005121.
The case where the atoms are all equal is A318813.
Multiset partitions of normal multisets are A255906.
Series-reduced rooted trees with normal leaves are A316651.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n,k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, u += v*sum(j=n, #v, (-1)^(j-n)*binomial(j-1,n-1)); v=EulerT(v)); u} seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2019
Extensions
Terms a(7) and beyond from Andrew Howroyd, Dec 30 2019
Comments