A330660 Triangle read by rows: T(n,k) is the number of polygons formed by connecting the vertices of a regular {2*n+1}-gon such that they make k turns around the center point.
1, 0, 1, 5, 6, 1, 140, 183, 36, 1, 7479, 9982, 2536, 162, 1, 636944, 880738, 267664, 28381, 672, 1, 79661322, 113973276, 39717471, 5860934, 285078, 2718, 1, 13781863080, 20321795499, 7893750308, 1475570241, 113442968, 2712595, 10908, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 5, 6, 1; 140, 183, 36, 1; 7479, 9982, 2536, 162, 1;
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..54
- Ludovic Schwob, Illustration of T(3,k), 0 <= k <= 3
- Dan Sunday, Inclusion of a Point in a Polygon, (2001).
- Wikipedia, Winding number
Programs
-
PARI
T(n)={ local(Cache=Map()); my(dir(p, q)=if(p<=n, if(q>n&&q<=p+n, 'x, 1), if(q<=n&&q>=p-n, 1/'x, 1))); my(recurse(k, p, b) = my(hk=[k, p, b], z); if(!mapisdefined(Cache, hk, &z), z = if(k==0, 1, sum(q=1, 2*n, if(!bittest(b, q), dir(p, q)*self()(k-1, q, b+(1<
Andrew Howroyd, May 16 2021
Formula
T(n,n)=1 for all n >= 0: The only solution is the polygon with Schläfli symbol {2n*1/n}.
Extensions
Terms a(21) and beyond from Andrew Howroyd, May 16 2021
Comments