A330667 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose atoms are the prime indices of n.
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 3, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 0, 1, 1, 5, 9, 5, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 0, 1, 1, 0, 1, 0, 1, 5, 5, 0, 1, 1, 3
Offset: 1
Examples
Triangle begins: {} 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 2 0 1 1 0 1 0 1 3 2 0 1 1 2 0 1 1 2 0 Row n = 84 counts the following multisystems (commas elided): {1124} {{1}{124}} {{{1}}{{1}{24}}} {{11}{24}} {{{11}}{{2}{4}}} {{12}{14}} {{{1}}{{2}{14}}} {{2}{114}} {{{12}}{{1}{4}}} {{4}{112}} {{{1}}{{4}{12}}} {{1}{1}{24}} {{{14}}{{1}{2}}} {{1}{2}{14}} {{{2}}{{1}{14}}} {{1}{4}{12}} {{{2}}{{4}{11}}} {{2}{4}{11}} {{{24}}{{1}{1}}} {{{4}}{{1}{12}}} {{{4}}{{2}{11}}}
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; totfac[n_,k_]:=If[k==1,1,Sum[totfac[Times@@Prime/@f,k-1],{f,Select[facs[n],1
Comments