A330681 a(n) = A283980(A025487(n)).
1, 6, 36, 30, 216, 180, 1296, 1080, 210, 7776, 900, 6480, 1260, 46656, 5400, 38880, 7560, 279936, 32400, 6300, 233280, 2310, 27000, 45360, 1679616, 194400, 37800, 1399680, 13860, 162000, 272160, 10077696, 1166400, 226800, 8398080, 83160, 972000, 44100, 1632960, 60466176, 189000, 6998400, 69300, 810000, 1360800
Offset: 1
Keywords
Examples
For example, 180 = 2^2 * 3^2 * 5^1 is present, because the maximal exponent in its prime factorization is 2, which occurs as an exponent of both 2 and 3, and because 180 is the minimal representative of the prime signature (2,2,1), as A046523(180) = 180.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..15703
Programs
-
PARI
A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980 A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e. v025487 = A025487list(64); A025487(n) = v025487[n]; A330681(n) = A283980(A025487(n));
Comments