cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330681 a(n) = A283980(A025487(n)).

Original entry on oeis.org

1, 6, 36, 30, 216, 180, 1296, 1080, 210, 7776, 900, 6480, 1260, 46656, 5400, 38880, 7560, 279936, 32400, 6300, 233280, 2310, 27000, 45360, 1679616, 194400, 37800, 1399680, 13860, 162000, 272160, 10077696, 1166400, 226800, 8398080, 83160, 972000, 44100, 1632960, 60466176, 189000, 6998400, 69300, 810000, 1360800
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2019

Keywords

Comments

After 1, contains only the least representatives of such prime signatures where the maximal exponent occurs more than once. However, here the terms are not in ascending order.

Examples

			For example, 180 = 2^2 * 3^2 * 5^1 is present, because the maximal exponent in its prime factorization is 2, which occurs as an exponent of both 2 and 3, and because 180 is the minimal representative of the prime signature (2,2,1), as A046523(180) = 180.
		

Crossrefs

Programs

  • PARI
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(64);
    A025487(n) = v025487[n];
    A330681(n) = A283980(A025487(n));

Formula

a(n) = A283980(A025487(n)).
A046523(a(n)) = a(n).
A085089(a(n)) = A101296(a(n)) = A330683(n).