A330688 Record values in A050377, number of ways to factor n into "Fermi-Dirac primes" (A050376).
1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 40, 56, 60, 80, 84, 104, 112, 120, 144, 160, 168, 184, 200, 208, 216, 224, 240, 260, 288, 320, 360, 368, 400, 416, 432, 460, 480, 520, 576, 600, 624, 640, 720, 736, 800, 864, 920, 960, 1040, 1104, 1120, 1152, 1200, 1440, 1456, 1472, 1480, 1600, 1840, 2016, 2080, 2400, 2576, 2880, 2960, 3360
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1004 (calculated using the b-file at A330687; terms 1..285 from Antti Karttunen)
Programs
-
PARI
upto_e = 101; \\ 101 --> 211 terms A018819(n) = if( n<1, n==0, if( n%2, A018819(n-1), A018819(n/2)+A018819(n-1))); \\ From A018819 v018819 = vector(upto_e,n,A018819(n)); A050377(n) = factorback(apply(e -> v018819[e], factor(n)[, 2])); A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980 A330688list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t, m=0, v025487); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); v025487 = vecsort(Vec(lista)); lista = List([]); for(i=1,#v025487,if((t=A050377(v025487[i]))>m, listput(lista,t); m=t)); Vec(lista); }; v330688 = A330688list(upto_e); A330688(n) = v330688[n];