cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330700 a(n) = (n - 1)*n*(2*n^2 + 4*n - 1)/6.

Original entry on oeis.org

0, 0, 5, 29, 94, 230, 475, 875, 1484, 2364, 3585, 5225, 7370, 10114, 13559, 17815, 23000, 29240, 36669, 45429, 55670, 67550, 81235, 96899, 114724, 134900, 157625, 183105, 211554, 243194, 278255, 316975, 359600, 406384, 457589, 513485, 574350, 640470, 712139, 789659
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2019

Keywords

Comments

Conjectures: (Start)
For n > 1, a(n) is the absolute value of the trace of the 2nd exterior power of an n X n square matrix M(n) defined as M[i,j,n] = i*j if i < 3 or j < 3 and M[i,j,n] = 2*(i + j) - 4 otherwise (see A330287). Equivalently, a(n) is the absolute value of the coefficient of the term [x^(n-2)] in the characteristic polynomial of M(n), or the absolute value of the sum of all principal minors of M(n) of size 2.
For k > 2, the trace of the k-th exterior power of M(n) is equal to zero.
(End)

Crossrefs

Cf. A000217, A001105 (super- and subdiagonal sum of M(n)), A001844 (trace of M(n)), A005843 (antitrace of M(n)), A268581, A319840, A322844, A330287 (permanent of M(n)).

Programs

  • Magma
    I:=[0, 0, 5, 29, 94]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
    
  • Mathematica
    Table[(n-1)n(2n^2+4n-1)/6,{n,0,39}]
  • PARI
    my(x='x + O('x^39)); concat([0, 0], Vec(serlaplace((1/6)*exp(x)*x^2*(15+14*x+2*x^2))))
    
  • Sage
    (x^2*(5+4*x-x^2)/(1-x)^5).series(x, 40).coefficients(x, sparse=False)

Formula

O.g.f.: x^2*(5 + 4*x - x^2)/(1 - x)^5.
E.g.f.: exp(x)*x^2*(15 + 14*x + 2*x^2)/6.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
a(n) = A000217(n-1)*A268581(n-1)/3 for n > 0.
Sum_{k>=2} 1/a(k) = (1/5)*((18 + 7*sqrt(6))*H(2-sqrt(3/2)) + (18 - 7*sqrt(6))*H(2+sqrt(3/2)) - 30) = 0.254905801002729039998040617... where H(x) = Integral_{t=0..1} (1 - t^x)/(1 - t) dt is the function that interpolates the harmonic numbers.