A330708 Numbers that are not the sum of 2 nonzero squares and a positive cube.
0, 1, 2, 4, 5, 7, 8, 12, 15, 17, 20, 22, 23, 24, 31, 36, 39, 43, 50, 55, 57, 63, 65, 70, 71, 78, 87, 94, 103, 111, 113, 115, 119, 120, 134, 139, 141, 148, 160, 167, 169, 185, 204, 211, 254, 263, 267, 279, 283, 286, 302, 311, 312, 331, 335, 342, 349, 379, 391
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..490
Programs
-
Maple
N:= 500: # for terms <= N G1:= add(x^(i^2), i=1..floor(sqrt(N))): G2:= add(x^(i^3), i=1..floor(N^(1/3))): G:= expand(G1^2*G2): select(t -> coeff(G,x,t)=0, [$0..N]); # Robert Israel, Jun 12 2020
-
Mathematica
m = 0; n = 400.; t = Union@Flatten@Table[x^2 + y^2 + z^3, {x, (n/2)^(1/2)}, {y, x, (n - x^2)^(1/2)}, {z, If[x^2 + y^2 < m, Floor[(m - 1 - x^2 - y^2)^(1/3)] + 1, 1], (n - x^2 - y^2)^(1/3)}]; Complement[Range[m, n], t]
Comments