cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330714 For any n >= 0 with binary expansion Sum_{k=0..w} b_k * 2^k, let h(n) = Sum_{k=0..w} b_k * i^k (where i denotes the imaginary unit); a(n) is the square of the modulus of h(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 2, 1, 1, 2, 0, 1, 2, 1, 1, 0, 1, 4, 2, 5, 0, 1, 1, 2, 2, 5, 1, 4, 1, 2, 0, 1, 1, 2, 4, 5, 2, 1, 5, 4, 0, 1, 1, 2, 1, 0, 2, 1, 2, 5, 5, 8, 1, 2, 4, 5, 1, 4, 2, 5, 0, 1, 1, 2, 1, 0, 2, 1, 4, 1, 5, 2, 2, 1, 1, 0, 5, 2, 4, 1, 0, 1, 1, 2, 1
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = a[Floor[n/2]]*I + Mod[n, 2]; Table[Abs[a[n]]^2, {n, 0, 100}] (* Amiram Eldar, May 06 2021, after Jean-François Alcover at A131851 *)
  • PARI
    {a(n) = my(d=Vecrev(digits(n, 2))); norm(sum(k=1, #d, d[k]*I^k))}

Formula

a(n) = A131851(n)^2 + A131852(n)^2.