A330727 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.
1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
Offset: 2
Examples
Triangle begins: {} 1 1 1 1 1 2 1 3 2 1 3 1 7 7 1 5 5 1 5 9 5 1 9 11 1 9 28 36 16 1 10 24 16 1 14 38 27 1 13 18 1 13 69 160 164 61 1 24 79 62 For example, row n = 12 counts the following multisystems: {1,1,2,3} {{1},{1,2,3}} {{{1}},{{1},{2,3}}} {{1,1},{2,3}} {{{1,1}},{{2},{3}}} {{1,2},{1,3}} {{{1}},{{2},{1,3}}} {{2},{1,1,3}} {{{1,2}},{{1},{3}}} {{3},{1,1,2}} {{{1}},{{3},{1,2}}} {{1},{1},{2,3}} {{{1,3}},{{1},{2}}} {{1},{2},{1,3}} {{{2}},{{1},{1,3}}} {{1},{3},{1,2}} {{{2}},{{3},{1,1}}} {{2},{3},{1,1}} {{{2,3}},{{1},{1}}} {{{3}},{{1},{1,2}}} {{{3}},{{2},{1,1}}}
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
Formula
T(2^n,k) = A008826(n,k).
Comments