cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330739 Number of values of k, 1 <= k <= n, with A047994(k) = A047994(n), where A047994 is unitary totient function uphi(n).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 2, 3, 2, 1, 1, 1, 4, 1, 2, 1, 4, 1, 1, 1, 2, 2, 3, 1, 3, 4, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 5, 2, 2, 1, 2, 2, 2, 3, 3, 1, 6, 1, 4, 2, 1, 3, 2, 1, 4, 1, 7, 1, 1, 1, 4, 5, 1, 2, 8, 1, 3, 1, 3, 1, 5, 1, 3, 2, 2, 1, 3, 2, 2, 4, 2, 3, 1, 1, 6, 2, 4, 1, 4, 1, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A047994.

Crossrefs

Cf. A047994.
Cf. also A081373 (ordinal transform of Euler totient function phi), A331177.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
    v330739 = ordinal_transform(vector(up_to, n, A047994(n)));
    A330739(n) = v330739[n];