A330752 Number of values of k, 1 <= k <= n, with A328478(k) = A328478(n), where A328478(n) gives the remainder when all maximal primorial divisors of n (from the largest to smallest) have been divided out.
1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 1, 3, 1, 9, 1, 10, 1, 2, 1, 11, 1, 2, 1, 4, 1, 4, 1, 3, 1, 2, 1, 12, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 13, 1, 2, 1, 14, 1, 4, 1, 3, 1, 2, 1, 15, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 6, 1, 2, 1, 5, 1, 3, 1, 3, 1, 2, 1, 16, 1, 2, 1, 3, 1, 4, 1, 5, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
A111701[n_] := A111701[n] = Block[{m = n, k = 1}, While[IntegerQ[m/Prime[k]], m = m/Prime[k]; k++]; m]; A328478[n_] := A328478[n] = If[A111701[n] == n, n, A328478[A111701[n]]]; Module[{b}, b[_] = 0; a[n_] := With[{t = A328478[n]}, b[t] = b[t] + 1]]; Array[a, 105] (* Jean-François Alcover, Jan 11 2022, after Robert G. Wilson v in A111701 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p)); A328478(n) = { my(u=A111701(n)); if(u==n, return(n), return(A328478(u))); }; v330752 = ordinal_transform(vector(up_to, n, A328478(n))); A330752(n) = v330752[n];
Comments