cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330756 Number of values of k, 1 <= k <= n, with A063994(k) = A063994(n), where A063994(n) = Product_{primes p dividing n} gcd(p-1, n-1).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 1, 7, 1, 8, 2, 9, 1, 10, 1, 11, 3, 12, 1, 13, 4, 14, 3, 1, 1, 15, 1, 16, 5, 17, 6, 18, 1, 19, 7, 20, 1, 21, 1, 22, 1, 23, 1, 24, 2, 25, 8, 2, 1, 26, 9, 27, 10, 28, 1, 29, 1, 30, 11, 31, 2, 1, 1, 32, 12, 3, 1, 33, 1, 34, 13, 4, 14, 35, 1, 36, 4, 37, 1, 38, 3, 39, 15, 40, 1, 41, 2, 42, 16
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2019

Keywords

Comments

Ordinal transform of A063994.

Crossrefs

Programs

  • Mathematica
    A063994[n_] := If[n==1, 1, Times @@ GCD[n-1, First /@ FactorInteger[n]-1]];
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = A063994[n]}, b[t] = b[t]+1]];
    Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    up_to = 65537;
    A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v330756 = ordinal_transform(vector(up_to, n, A063994(n)));
    A330756(n) = v330756[n];