A330757 Let d(1) < d(2) < ... < d(q) denote the divisors of n; a(n) is the number of elements of the set { d(1)/d(2), d(2)/d(3), ..., d(q-1)/d(q) }.
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 6, 1, 2, 3, 1, 2, 3, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 2, 3, 1, 3, 1, 2, 1, 5, 2, 2, 2
Offset: 1
Keywords
Examples
For n = 42: - the divisors of 42 are: 1, 2, 3, 6, 7, 14, 21, 42, - the corresponding quotients are: 1/2, 2/3, 1/2, 6/7, 1/2, 2/3, 1/2, - which corresponds to the set { 1/2, 2/3, 6/7 }, - hence a(42) = 3.
Programs
-
PARI
a(n) = my (d=divisors(n)); #Set(vector(#d-1, k, d[k]/d[k+1]))
Formula
a(n) = 1 iff n is a prime power (A246655).
Comments