cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330770 a(n) = 19 * 8^n + 17 for n >= 0.

Original entry on oeis.org

36, 169, 1233, 9745, 77841, 622609, 4980753, 39845905, 318767121, 2550136849, 20401094673, 163208757265, 1305670058001, 10445360463889, 83562883710993, 668503069687825, 5348024557502481, 42784196460019729, 342273571680157713, 2738188573441261585
Offset: 0

Views

Author

Bernard Schott, Feb 23 2020

Keywords

Comments

This sequence is the subject of the 4th problem of the 12th British Mathematical Olympiad in 1976 (see the link BMO).
Proposition: a(n) is never a prime number.
Proof:
If n is even, 3 divides a(n),
if n is odd with n = 4*k+1, 13 divides a(n), and
if n is odd with n = 4*k+3, 5 divides a(n).

Examples

			a(4) = 19 * 8^4 + 17 = 77841 = 3 * 25947.
a(5) = 19 * 8^5 + 17 = 622609 = 13 * 47893.
a(7) = 19 * 8^7 + 17 = 39845905 = 5 * 7969181.
		

References

  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 4 pp. 70 and 216-217 (1991).

Crossrefs

Cf. A001018 (8^n).

Programs

  • Maple
    B:=seq(19*8^n+17, n=0..40);
  • Mathematica
    Table[19 * 8^n + 17, {n, 0, 19}] (* Amiram Eldar, Feb 23 2020 *)
  • PARI
    Vec((36 - 155*x) / ((1 - x)*(1 - 8*x)) + O(x^20)) \\ Colin Barker, Feb 25 2020

Formula

a(n) = 19 * A001018(n) + 17.
From Colin Barker, Feb 25 2020: (Start)
G.f.: (36 - 155*x) / ((1 - x)*(1 - 8*x)).
a(n) = 9*a(n-1) - 8*a(n-2) for n>1.
(End)
E.g.f.: exp(x)*(17 + 19*exp(7*x)). - Stefano Spezia, Feb 25 2020