A339929 a(n+1) = a(n-1-a(n)^2) + 1, starting with a(1) = a(2) = 0.
0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 2, 3, 3, 2, 2, 4, 2, 4, 2, 3, 4, 3, 4, 3, 3, 3, 5, 2, 5, 2, 4, 3, 4, 5, 4, 5, 4, 4, 5, 4, 5, 3, 4, 4, 6, 4, 6, 4, 5, 5, 4, 6, 3, 5, 3, 7, 3, 7, 4, 4, 5, 5, 6, 4, 7, 3, 8, 3, 8, 3, 5, 7, 4, 8, 2, 4, 5, 5, 7, 6, 5, 4, 8, 5, 8, 4, 9, 3, 6, 7, 5
Offset: 1
Keywords
Examples
a(3) = a(2-1-a(2)^2)+1 = a(1)+1 = 1. a(4) = a(3-1-a(3)^2)+1 = a(1)+1 = 1. a(5) = a(4-1-a(4)^2)+1 = a(2)+1 = 1. a(6) = a(5-1-a(5)^2)+1 = a(3)+1 = 2.
Links
- Rok Cestnik, Table of n, a(n) for n = 1..1000
- Rok Cestnik, Term-referencing tree for 1000 terms
- Rok Cestnik, Program for plotting the term-referencing tree
Programs
-
C
#include
#include int main(void){ int N = 1000; int *a = (int*)malloc(N*sizeof(int)); a[0] = 0; a[1] = 0; for(int n = 1; n < N-1; ++n){ a[n+1] = a[n-1-a[n]*a[n]]+1; } free(a); return 0; } -
Python
a = [0,0] for n in range(1,1000): a.append(a[n-1-a[n]**2]+1)
Formula
a(n) ~ (3*n)^(1/3) (conjectured).
Comments