A330775 Irregular triangle read by rows: row n gives the primes of the form m*prime(n)+1 where m is an even number <= prime(n) and prime(n) is the n-th prime, or 0 if no such prime exists for any n.
5, 7, 11, 29, 43, 23, 67, 89, 53, 79, 131, 157, 103, 137, 239, 191, 229, 47, 139, 277, 461, 59, 233, 349, 523, 311, 373, 683, 149, 223, 593, 1259, 83, 739, 821, 1231, 1559, 173, 431, 947, 1033, 1291, 1549, 1721, 283, 659, 941, 1129, 1223, 1693, 1787, 2069, 107, 743, 1061, 1697, 2333
Offset: 1
Examples
For n = 4, m = {4, 6}, prime(4) = 7, and 4*7+1 = 29, 6*7+1 = 43 are primes. Rows of the triangle: n=1 => {5} n=2 => {7} n=3 => {11} n=4 => {29, 43} n=5 => {23, 67, 89} n=6 => {53, 79, 131, 157} n=7 => {103, 137, 239} n=8 => {191, 229} n=9 => {47, 139, 277, 461} ...
Links
- Metin Sariyar, Rows n = 1..220
Programs
-
Mathematica
row[n_] := Select[2 * Range[Floor[(p = Prime[n])/2]] * p + 1, PrimeQ]; row /@ Range[16] //Flatten (* Amiram Eldar, Jan 02 2020 *)
-
PARI
row(n) = select(x->isprime(x), vector(prime(n)\2, k, 2*k*prime(n)+1)); \\ Michel Marcus, Feb 05 2020
Formula
T(n, 1) = A035095(n) for n > 1. - Michel Marcus, Jan 02 2020
Comments