A330776 Triangle read by rows: T(n,k) is the number of balanced reduced multisystems of weight n with atoms colored using exactly k colors.
1, 1, 1, 2, 6, 4, 6, 37, 63, 32, 20, 262, 870, 1064, 436, 90, 2217, 12633, 27824, 26330, 9012, 468, 21882, 201654, 710712, 1163320, 895608, 262760, 2910, 249852, 3578610, 18924846, 47608000, 61786254, 40042128, 10270696, 20644, 3245520, 70539124, 538018360, 1950556400, 3792461176, 4070160416, 2275829088, 518277560
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 6, 4; 6, 37, 63, 32; 20, 262, 870, 1064, 436; 90, 2217, 12633, 27824, 26330, 9012; 468, 21882, 201654, 710712, 1163320, 895608, 262760; ... The T(3,2) = 6 balanced reduced multisystems are: {1,1,2}, {1,2,2}, {{1},{1,2}}, {{1},{2,2}}, {{2},{1,1}}, {{2},{1,2}}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n,k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, u += v*sum(j=n, #v, (-1)^(j-n)*binomial(j-1,n-1)); v=EulerT(v)); u} M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))} {my(T=M(10)); for(n=1, #T~, print(T[n, 1..n]))}
Comments