A368099 Triangle read by rows where T(n,k) is the number of non-isomorphic k-element sets of finite nonempty multisets with cardinalities summing to n, or strict multiset partitions of weight n and length k.
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 5, 1, 0, 7, 28, 22, 5, 1, 0, 11, 66, 83, 31, 5, 1, 0, 15, 134, 252, 147, 34, 5, 1, 0, 22, 280, 726, 620, 203, 35, 5, 1, 0, 30, 536, 1946, 2283, 1069, 235, 35, 5, 1, 0, 42, 1043, 4982, 7890, 5019, 1469, 248, 35, 5, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 1 0 3 4 1 0 5 12 5 1 0 7 28 22 5 1 0 11 66 83 31 5 1 0 15 134 252 147 34 5 1 0 22 280 726 620 203 35 5 1 0 30 536 1946 2283 1069 235 35 5 1 0 42 1043 4982 7890 5019 1469 248 35 5 1 ... Row n = 4 counts the following representatives: . {{1,1,1,1}} {{1},{1,1,1}} {{1},{2},{1,1}} {{1},{2},{3},{4}} {{1,1,1,2}} {{1},{1,1,2}} {{1},{2},{1,2}} {{1,1,2,2}} {{1},{1,2,2}} {{1},{2},{1,3}} {{1,1,2,3}} {{1},{1,2,3}} {{1},{2},{3,3}} {{1,2,3,4}} {{1},{2,2,2}} {{1},{2},{3,4}} {{1},{2,2,3}} {{1},{2,3,4}} {{1,1},{1,2}} {{1,1},{2,2}} {{1,1},{2,3}} {{1,2},{1,3}} {{1,2},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; Table[Length[Union[brute /@ Select[mpm[n],UnsameQ@@#&&Length[#]==k&]]], {n,0,5},{k,0,n}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} G(n)={my(s=0); forpart(q=n, my(p=sum(t=1, n, y^t*subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*exp(p-subst(subst(p, x, x^2), y, y^2))); s/n!} T(n)={[Vecrev(p) | p <- Vec(G(n))]} { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024