A330798 Triangle read by rows, interpolating between the central binomial coefficients and the central coefficients of the Catalan triangle. T(n, k) for 0 <= k <= n.
1, 2, 2, 6, 15, 9, 20, 84, 112, 48, 70, 420, 900, 825, 275, 252, 1980, 5940, 8580, 6006, 1638, 924, 9009, 35035, 70070, 76440, 43316, 9996, 3432, 40040, 192192, 495040, 742560, 651168, 310080, 62016, 12870, 175032, 1002456, 3174444, 6104700, 7325640, 5372136, 2206413, 389367
Offset: 0
Examples
Triangle starts: n\k [0] [1] [2] [3] [4] [5] [6] [7] [0] 1 [1] 2, 2 [2] 6, 15, 9 [3] 20, 84, 112, 48 [4] 70, 420, 900, 825, 275 [5] 252, 1980, 5940, 8580, 6006, 1638 [6] 924, 9009, 35035, 70070, 76440, 43316, 9996 [7] 3432, 40040, 192192, 495040, 742560, 651168, 310080, 6201
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A330798:= func< n,k | ((n+1)/(n+k+1))*Binomial(n,k)*Binomial(2*n+k,n) >; [A330798(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 23 2023
-
Maple
alias(C=binomial): T := (n, k) -> ((n+1)/(2*n+1))*C(2*n+1, n+k+1)*C(2*n+k, k): seq(seq(T(n,k), k=0..n), n=0..8);
-
Mathematica
T[n_, k_]:= ((n+1)/(n+k+1))*Binomial[n,k]*Binomial[2*n+k,n]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 23 2023 *)
-
SageMath
def A330798(n,k): return ((n+1)/(n+k+1))*binomial(n, k)*binomial(2*n+k, n) flatten([[A330798(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 23 2023
Formula
T(n, k) := ((n+1)/(2*n+1))*binomial(2*n+1, n+k+1)*binomial(2*n+k, k).
T(n, 0) = A000984(n).
T(n, n) = A174687(n).
Sum_{k=0..n} T(n, k) = A330801(n).
Sum_{k=0..n} (-1)^k*T(n, k) = 0^n. - G. C. Greubel, May 23 2023