cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330798 Triangle read by rows, interpolating between the central binomial coefficients and the central coefficients of the Catalan triangle. T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 2, 2, 6, 15, 9, 20, 84, 112, 48, 70, 420, 900, 825, 275, 252, 1980, 5940, 8580, 6006, 1638, 924, 9009, 35035, 70070, 76440, 43316, 9996, 3432, 40040, 192192, 495040, 742560, 651168, 310080, 62016, 12870, 175032, 1002456, 3174444, 6104700, 7325640, 5372136, 2206413, 389367
Offset: 0

Views

Author

Peter Luschny, Jan 02 2020

Keywords

Examples

			Triangle starts:
  n\k  [0]    [1]     [2]     [3]     [4]     [5]     [6]   [7]
  [0]    1
  [1]    2,     2
  [2]    6,    15,      9
  [3]   20,    84,    112,     48
  [4]   70,   420,    900,    825,    275
  [5]  252,  1980,   5940,   8580,   6006,   1638
  [6]  924,  9009,  35035,  70070,  76440,  43316,   9996
  [7] 3432, 40040, 192192, 495040, 742560, 651168, 310080, 6201
		

Crossrefs

Programs

  • Magma
    A330798:= func< n,k | ((n+1)/(n+k+1))*Binomial(n,k)*Binomial(2*n+k,n) >;
    [A330798(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 23 2023
    
  • Maple
    alias(C=binomial): T := (n, k) -> ((n+1)/(2*n+1))*C(2*n+1, n+k+1)*C(2*n+k, k):
    seq(seq(T(n,k), k=0..n), n=0..8);
  • Mathematica
    T[n_, k_]:= ((n+1)/(n+k+1))*Binomial[n,k]*Binomial[2*n+k,n];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 23 2023 *)
  • SageMath
    def A330798(n,k): return ((n+1)/(n+k+1))*binomial(n, k)*binomial(2*n+k, n)
    flatten([[A330798(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 23 2023

Formula

T(n, k) := ((n+1)/(2*n+1))*binomial(2*n+1, n+k+1)*binomial(2*n+k, k).
T(n, 0) = A000984(n).
T(n, n) = A174687(n).
Sum_{k=0..n} T(n, k) = A330801(n).
Sum_{k=0..n} (-1)^k*T(n, k) = 0^n. - G. C. Greubel, May 23 2023