cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330801 a(n) = A080247(2*n, n), the central values of the Big-Schröder triangle.

Original entry on oeis.org

1, 4, 30, 264, 2490, 24396, 244790, 2496528, 25763058, 268243860, 2812481870, 29653804824, 314097641130, 3339741725404, 35626286189670, 381098437754912, 4086504567333858, 43912100376527652, 472743964145437310, 5097853987059017000, 55054474579787825562
Offset: 0

Views

Author

Peter Luschny, Jan 02 2020

Keywords

Crossrefs

Row sums of A330798.
Cf. A080247.

Programs

  • Magma
    A330801:= func< n | ((n+1)/(2*n+1))*(&+[Binomial(2*n+1, n+j+1)*Binomial(2*n+j, j): j in [0..n]]) >;
    [A330801(n): n in [0..40]]; // G. C. Greubel, May 03 2023
    
  • Maple
    a := n -> ((n+1)/(2*n+1))*binomial(2*n+1, n+1)*hypergeom([-n, 2*n+1], [n+2], -1):
    seq(simplify(a(n)), n=0..20);
    # Alternative:
    alias(C = binomial):
    a := n -> ((n+1)/(2*n+1))*add(C(2*n+1, n+j+1)*C(2*n+j, j), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    a[n_]:= (1/Sqrt[Pi]) 4^n (1 + n) Gamma[1/2 + n] Hypergeometric2F1Regularized[-n, 1 + 2 n, 2 + n, -1]; Table[a[n], {n, 0, 20}]
  • SageMath
    def A330801(n) -> int:
        s = sum( binomial(2 * n + 1, n + j + 1) * binomial(2 * n + j, j)
            for j in range(n + 1) )
        return (s * (n + 1)) // (2 * n + 1)
    print([A330801(n) for n in range(41)])  # G. C. Greubel, May 03 2023

Formula

a(n) = ((n+1)/(2*n+1))*Sum_{j=0..n} binomial(2*n+1, n+j+1) * binomial(2*n+j, j).
a(n) = ((n+1)/(2*n+1))*binomial(2*n+1, n+1)*hypergeom([-n, 2*n + 1], [n + 2], -1).
D-finite with recurrence 2*n*(2*n+1)*(7*n-13)*a(n) - (382*n^3 -983*n^2 +533*n -40)*a(n-1) + (n-2)*(786*n^2 -3290*n +3315)*a(n-2) + (2*n-5)*(37*n-39)*(n-3)*a(n-3) = 0. - R. J. Mathar, Jul 27 2022
a(n) ~ phi^(5*n + 1) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 03 2023