A330802 Evaluation of the Big-Schröder polynomials at 1/2 and normalized with 2^n.
1, 5, 33, 253, 2121, 18853, 174609, 1667021, 16290969, 162171445, 1638732129, 16765758429, 173325794409, 1807840791237, 19001320087473, 201050792435949, 2139811906460985, 22892988893079637, 246061004607915777, 2655768423781296893, 28771902274699214601
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..941
Programs
-
Maple
a := proc(n) option remember; if n < 3 then return [1, 5, 33][n+1] fi; ((24 - 12*n)*a(n-3) + (32*n - 10)*a(n-2) + (9*n - 9)*a(n-1))/(n+1) end: seq(a(n), n=0..20); # Alternative: gf := 2/(1 - 4*x + sqrt(1 + 4*(x - 3)*x)): ser := series(gf, x, 24): seq(coeff(ser, x, n), n=0..20); # Or: series((x - x^2)/(3*x^2 + 4*x + 1), x, 24): gfun:-seriestoseries(%, 'revogf'): convert(%, polynom) / x: seq(coeff(%, x, n), n=0..20);
-
Mathematica
A080247[n_, k_] := (k+1)*Sum[2^m*Binomial[n+1, m]*Binomial[n-k-1, n-k-m], {m, 0, n-k}]/(n+1); a[n_] := 2^n*Sum[A080247[n, k]/2^k , {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 22 2023 *)
-
PARI
N=20; x='x+O('x^N); Vec(2/(1-4*x+sqrt(1+4*(x-3)*x))) \\ Seiichi Manyama, Feb 03 2020
-
SageMath
R.
= PowerSeriesRing(QQ) f = (x - x^2)/(3*x^2 + 4*x + 1) f.reverse().shift(-1).list()
Formula
a(n) = 2^n*Sum_{k=0..n} A080247(n,k)/2^k.
a(n) = ((24 - 12*n)*a(n-3) + (32*n - 10)*a(n-2) + (9*n - 9)*a(n-1))/(n + 1).
a(n) = [x^n] 2/(1 - 4*x + sqrt(1 + 4*(x - 3)*x)).
a(n) = [x^n] reverse((x - x^2)/(3*x^2 + 4*x + 1))/x.
a(n) ~ 2^(n + 5/4) * (1 + sqrt(2))^(2*n-1) / (sqrt(Pi) * (57 - 40*sqrt(2)) * n^(3/2)). - Vaclav Kotesovec, Oct 22 2023