A330838 Numbers of the form 2^(2*p)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.
9408, 2952192, 792772608, 13507500548554752, 885430204790715973632, 226672726487439148843008, 63802943738254840027519543753580740608, 84808659109362447746438494074097423574469305696233859650983304520596979712
Offset: 1
Keywords
Examples
If p = 3, then M_3 = 7 and a(1) = 2^(2*3)*3*7^2 = 9408, with spectral basis {63^2, 56^2, 48^2}, and spectral sum equal to 1*9408 + 1 = 9409. However, {63^2, 56^2, 48^2} is also the spectral basis of A330836(1) = 4704, with spectral sum equal to 2*4704+1.
Links
- G. Sobczyk, The Missing Spectral Basis in Algebra and Number Theory, The American Mathematical Monthly 108(4), April 2001.
- Wikipedia, Idempotent (ring theory)
- Wikipedia, Peirce decomposition
Crossrefs
Programs
-
Maple
a := proc(n::posint) local p, m; p:=NumberTheory[IthMersenne](n+1); m:=2^p-1; return 2^(2*p)*3*m^2; end:
-
Mathematica
f[p_] := 2^(2p)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 17 2020 *)
Comments