A330840 a(n) = 4*M(n)^2*(M(n)+1)^2, where M(n) is the n-th Mersenne prime, A000668.
576, 12544, 3936256, 1057030144, 18010000731406336, 1180573606387621298176, 302230301983252198457344, 85070591651006453370026058338107654144, 113078212145816596995251325432129898099292407594978479534644406027462639616
Offset: 1
Keywords
Examples
a(2) = 4*7^2*2^(2*3) = 2^8*7^2 = 112^2, and the spectral basis of A330839(1) = 18816 is {63^2, 112^2, 48^2}, consisting only of powers.
Links
- Garret Sobczyk, The Missing Spectral Basis in Algebra and Number Theory, The American Mathematical Monthly, Vol. 108, No. 4 (April 2001), pp. 336-346.
- Wikipedia, Idempotent (ring theory)
- Wikipedia, Peirce decomposition
Programs
-
Maple
A330840 := proc(n::posint) local p, m; p:=NumberTheory[IthMersenne](n); m:=2^p-1; return 4*m^2*(m+1)^2; end:
-
Mathematica
f[p_] := 2^(2*p + 2)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[9] (* Amiram Eldar, Jan 24 2020 *)
Comments