A330852 Numerator of the rational number A(n) that appears in the formula for the n-th cumulant k(n) = (-1)^n*2^n*(A(n) - (n - 1)!*zeta(n)) of the limiting distribution of the number of comparisons in quicksort, for n >= 2, with A(0) = 1 and A(1) = 0.
1, 0, 7, 19, 937, 85981, 21096517, 7527245453, 19281922400989, 7183745930973701, 3616944955616896387, 273304346447259998403709, 76372354431694636659849988531, 25401366514997931592208126670898607, 110490677504100075544188675746430710672527, 37160853195949529205295416197788818165029489819
Offset: 0
Examples
The first few fractions A(n) are 1, 0, 7/4, 19/8, 937/144, 85981/3456, 21096517/172800, 7527245453/10368000, 19281922400989/3810240000, 7183745930973701/177811200000, ... The first few fractions (-2)^n*A(n) (= a_n in Hoffman and Kuba and in Finch) are 1, 0, 7, -19, 937/9, -85981/108, 21096517/2700, -7527245453/81000, 19281922400989/14883750, -7183745930973701/347287500, ...
References
- Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991), p. 83.
Links
- Petros Hadjicostas, Table of n, a(n) for n = 0..30
- S. B. Ekhad and D. Zeilberger, A detailed analysis of quicksort running time, arXiv:1903.03708 [math.PR], 2019. [They have the first eight moments for the number of comparisons in quicksort from which Hennequin's first eight asymptotic cumulants can be derived.]
- James A. Fill and Svante Janson, Smoothness and decay properties of the limiting Quicksort density function, In: D. Gardy and A. Mokkadem (eds), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 53-64.
- James A. Fill and Svante Janson, Quicksort asymptotics, Journal of Algorithms, 44(1) (2002), 4-28.
- Steven Finch, Recursive PGFs for BSTs and DSTs, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives the constants a_s = (-2)^s*A(s) for s >= 2.]
- P. Hennequin, Combinatorial analysis of the quicksort algorithm, Informatique théoretique et applications, 23(3) (1989), 317-333.
- M. E. Hoffman and M. Kuba, Logarithmic integrals, zeta values, and tiered binomial coefficients, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They study the constants a_s = (-2)^s*A(s) for s >= 2.]
- Mireille Régnier, A limiting distribution for quicksort, Informatique théorique et applications, 23(3) (1989), 335-343.
- Uwe Rösler, A limit theorem for quicksort, Informatique théorique et applications, 25(1) (1991), 85-100.
- Kok Hooi Tan and Petros Hadjicostas, Density and generating functions of a limiting distribution in quicksort, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see p. 10.
- Kok Hooi Tan and Petros Hadjicostas, Some properties of a limiting distribution in Quicksort, Statistics and Probability Letters, 25(1), 1995, 87-94.
- Vytas Zacharovas, On the exponential decay of the characteristic function of the quicksort distribution, arXiv:1605.04018 [math.CO], 2016.
Crossrefs
Programs
-
Maple
# Produces the sequence (B(n): n >= 0) B := proc(m) option remember: local v, g, f, b: if m = 0 then v := 1: end if: if m = 1 then v := 0: end if: if 2 <= m then g := proc(k) add((-1)^a*B(k - a)/(a!*(k - a)!*2^a), a = 0 .. k): end proc: f := proc(r) add(Stirling1(r + 1, i + 1)*g(r - i), i = 0 .. r): end proc: b := proc(p) (-1)^p*(add(Stirling1(p + 2, r + 1)*B(p - r)/(p - r)!, r = 1 .. p) + add(f(rr)*f(p - rr), rr = 1 .. p - 1) + 2*(-1)^p*p!*add((-1)^a*B(p - a)/(a!*(p - a)!*2^a), a = 1 .. p) + 2*add(Stirling1(p + 1, i + 1)*g(p - i), i = 1 .. p))/(p - 1): end proc: v := simplify(b(m)): end if: v: end proc: # Produces the sequence (A(n): n >= 0) A := proc(m) option remember: local v: if m = 0 then v := 1: end if: if m = 1 then v := 0: end if: if 2 <= m then v := -(m - 1)!*add(A(k + 1)*B(m - 1 - k)/(k!*(m - 1 - k)!), k = 0 .. m - 2) + B(m): end if: v: end proc: # Produces the sequence of numerators of the A(n)'s seq(numer(A(n)), n = 0 .. 15);
-
Mathematica
B[m_] := B[m] = Module[{v, g, f, b}, If[m == 0, v = 1]; If[m == 1, v = 0]; If[2 <= m, g[k_] := Sum[(-1)^a*B[k - a]/(a!*(k - a)!*2^a), {a, 0, k}]; f[r_] := Sum[StirlingS1[r + 1, i + 1]*g[r - i], {i, 0, r}]; b[p_] := (-1)^p*(Sum[StirlingS1[p + 2, r + 1]*B[p - r]/(p - r)!, {r, 1, p}] + Sum[f[rr]*f[p - rr], {rr, 1, p - 1}] + 2*(-1)^p*p!*Sum[(-1)^a*B[p - a]/(a!*(p - a)!*2^a), {a, 1, p}] + 2*Sum[StirlingS1[p + 1, i + 1]*g[p - i], {i, 1, p}])/(p - 1); v = Simplify[b[m]]]; v]; A[m_] := A[m] = Module[{v}, If[ m == 0, v = 1]; If[m == 1, v = 0]; If[2 <= m , v = -(m - 1)!*Sum[A[k + 1]*B[m - 1 - k]/(k!*(m - 1 - k)!), {k , 0 , m - 2}] + B[m]]; v]; Table[Numerator[A[n]], {n, 0, 15}] (* Jean-François Alcover, Aug 17 2020, translated from Maple *)
Comments