A330899 Numbers m such that (1/m) * Sum_{k=1..m} sigma(k)/k sets a record value, where sigma(k) is the sum of divisors of k.
1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 36, 42, 48, 56, 60, 72, 84, 90, 96, 100, 108, 112, 120, 144, 156, 168, 180, 192, 210, 240, 276, 280, 288, 300, 312, 324, 330, 336, 360, 396, 408, 420, 480, 528, 540, 576, 600, 630, 660, 672, 720, 756, 792
Offset: 1
Keywords
Examples
The mean abundancy in the range 1..m for m = 1, 2, ..., 6 is 1, 1.25, 1.277..., 1.395..., 1.356..., 1.463..., so the record values occur at 1, 2, 3, 4 and 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..600
- R. A. MacLeod, Extreme values for divisor functions, Bulletin of the Australian Mathematical Society, Vol. 37, No. 3, (1988), pp. 447-465. See Theorem 9 (iii), p. 463.
- Y. -F. S. Pétermann, An Omega-theorem for an error term related to the sum-of-divisors function, Monatshefte für Mathematik, Vol. 103, No. 2 (1987), pp. 145-157.
Programs
-
Mathematica
seq = {}; s = 0; rm = 0; Do[s += DivisorSigma[1, n]/n; r = s/n; If[r > rm, rm = r; AppendTo[seq, n]], {n, 1, 1000}]; seq
Comments