A330904 Numbers m such that the number of 1's in the binary expansion of m equals the sum of the balanced ternary trits of m.
0, 1, 10, 12, 13, 34, 36, 37, 66, 67, 120, 121, 192, 193, 202, 264, 265, 272, 273, 282, 283, 354, 355, 360, 361, 514, 516, 517, 520, 526, 544, 576, 577, 688, 840, 841, 848, 849, 904, 928, 1026, 1027, 1028, 1029, 1032, 1033, 1038, 1039, 1062, 1063, 1074, 1075
Offset: 1
Examples
34_10 = 11T1_bt = 10010_2, the sum of the digits is 1+1-1+1 = 2 for balanced ternary and 1+1 = 2 for base 2, so 34 is a term.
Links
- Thomas König, Table of n, a(n) for n = 1..20000
- Thomas König, C program
- Thomas König, Fortran program to test the conjecture that there are at most four consecutive numbers in sequence
Programs
-
PARI
bt(n)= if (n==0, return (0)); my(d=digits(n, 3), c=1); while(c, if(d[1]==2, d=concat(0, d)); c=0; for(i=2, #d, if(d[i]==2, d[i]=-1; d[i-1]+=1; c=1))); vecsum(d); \\ A065363 isok(m) = bt(m) == hammingweight(m); \\ Michel Marcus, Jun 07 2020
Extensions
Offset corrected by Thomas König, Jul 09 2020
Comments