A330915 Sum of the "middle" side lengths (b such that a <= b <= c) of all Heronian triangles with perimeter A051518(n).
4, 5, 5, 8, 12, 23, 45, 15, 29, 13, 48, 30, 77, 24, 69, 117, 25, 25, 46, 119, 20, 26, 110, 246, 26, 167, 172, 205, 169, 79, 468, 33, 229, 38, 222, 167, 429, 41, 429, 101, 270, 560, 416, 100, 153, 276, 390, 717, 50, 615, 61, 61, 60, 404, 634, 214, 130, 130, 1033, 975, 382
Offset: 1
Keywords
Examples
a(1) = 4; there is one Heronian triangle with perimeter A051518(1) = 12, which is [3,4,5] and its "middle" side length is 4. a(6) = 23; there are two Heronian triangles with perimeter A051518(6) = 32, [4,13,15] and [10,10,12]. The sum is 13 + 10 = 23.
Links
- Eric Weisstein's World of Mathematics, Heronian Triangle
- Wikipedia, Heronian triangle
- Wikipedia, Integer Triangle
Formula
a(n) = Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * chi(sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)))) * i, where chi(n) = 1 - ceiling(n) + floor(n) and c(n) = A051518(n). - Wesley Ivan Hurt, May 12 2020