cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A330972 Sorted list containing the least number with each possible nonzero number of factorizations into factors > 1.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 36, 48, 60, 72, 96, 120, 128, 144, 180, 192, 216, 240, 256, 288, 360, 384, 420, 432, 480, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1440, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2520, 2592, 2880, 3072, 3360, 3456, 3600
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Comments

This is the sorted list of positions of first appearances in A001055 of each element of the range (A045782).

Examples

			Factorizations of n for n = 4, 8, 12, 16, 24, 36, 48, 60:
  4    8      12     16       24       36       48         60
  2*2  2*4    2*6    2*8      3*8      4*9      6*8        2*30
       2*2*2  3*4    4*4      4*6      6*6      2*24       3*20
              2*2*3  2*2*4    2*12     2*18     3*16       4*15
                     2*2*2*2  2*2*6    3*12     4*12       5*12
                              2*3*4    2*2*9    2*3*8      6*10
                              2*2*2*3  2*3*6    2*4*6      2*5*6
                                       3*3*4    3*4*4      3*4*5
                                       2*2*3*3  2*2*12     2*2*15
                                                2*2*2*6    2*3*10
                                                2*2*3*4    2*2*3*5
                                                2*2*2*2*3
		

Crossrefs

All terms belong to A025487
Includes all highly factorable numbers A033833.
Factorizations are A001055, with image A045782.
The least number with A045782(n) factorizations is A045783(n).
The least number with n factorizations is A330973(n).
The strict version is A330997.

Programs

  • Mathematica
    nn=1000;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[facs,nn];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A045782 Number of factorizations of n for some n (image of A001055).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 19, 21, 22, 26, 29, 30, 31, 36, 38, 42, 45, 47, 52, 56, 57, 64, 66, 67, 74, 77, 92, 97, 98, 101, 105, 109, 118, 135, 137, 139, 141, 162, 165, 171, 176, 181, 189, 195, 198, 203, 212, 231, 249, 250, 254, 257, 267, 269, 272, 289
Offset: 1

Views

Author

Keywords

Comments

Also the image of A318284. - Gus Wiseman, Jan 11 2020

Crossrefs

Factorizations are A001055 with image this sequence and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with exactly a(n) factorizations is A045783(n).
The least number with exactly n factorizations is A330973(n).

Programs

  • Mathematica
    terms = 61; m0 = 10^5; dm = 10^4;
    f[1, ] = 1; f[n, k_] := f[n, k] = Sum[f[n/d, d], {d, Select[Divisors[n], 1 < # <= k &]}];
    Clear[seq]; seq[m_] := seq[m] = Sort[Tally[Table[f[n, n], {n, 1, m}]][[All, 1]]][[1 ;; terms]]; seq[m = m0]; seq[m += dm]; While[Print[m]; seq[m] != seq[m - dm], m += dm];
    seq[m] (* Jean-François Alcover, Oct 04 2018 *)

Formula

The Luca et al. paper shows that the number of terms with a(n) <= x is x^{ O( log log log x / log log x )}. - N. J. A. Sloane, Jun 12 2009

Extensions

Name edited by Gus Wiseman, Jan 11 2020

A330935 Irregular triangle read by rows where T(n,k) is the number of length-k chains from minimum to maximum in the poset of factorizations of n into factors > 1, ordered by refinement.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 5, 8, 4, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 1, 0, 1, 0, 1, 0, 1, 5, 5, 1, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2020

Keywords

Comments

This poset is equivalent to the poset of multiset partitions of the prime indices of n, ordered by refinement.

Examples

			Triangle begins:
   1:          16: 0 1 3 2    31: 1            46: 0 1
   2: 1        17: 1          32: 0 1 5 8 4    47: 1
   3: 1        18: 0 1 2      33: 0 1          48: 0 1 10 23 15
   4: 0 1      19: 1          34: 0 1          49: 0 1
   5: 1        20: 0 1 2      35: 0 1          50: 0 1 2
   6: 0 1      21: 0 1        36: 0 1 7 7      51: 0 1
   7: 1        22: 0 1        37: 1            52: 0 1 2
   8: 0 1 1    23: 1          38: 0 1          53: 1
   9: 0 1      24: 0 1 5 5    39: 0 1          54: 0 1 5 5
  10: 0 1      25: 0 1        40: 0 1 5 5      55: 0 1
  11: 1        26: 0 1        41: 1            56: 0 1 5 5
  12: 0 1 2    27: 0 1 1      42: 0 1 3        57: 0 1
  13: 1        28: 0 1 2      43: 1            58: 0 1
  14: 0 1      29: 1          44: 0 1 2        59: 1
  15: 0 1      30: 0 1 3      45: 0 1 2        60: 0 1 9 11
Row n = 48 counts the following chains (minimum and maximum not shown):
  ()  (6*8)      (2*3*8)->(6*8)       (2*2*2*6)->(2*4*6)->(6*8)
      (2*24)     (2*4*6)->(6*8)       (2*2*3*4)->(2*3*8)->(6*8)
      (3*16)     (2*3*8)->(2*24)      (2*2*3*4)->(2*4*6)->(6*8)
      (4*12)     (2*3*8)->(3*16)      (2*2*2*6)->(2*4*6)->(2*24)
      (2*3*8)    (2*4*6)->(2*24)      (2*2*2*6)->(2*4*6)->(4*12)
      (2*4*6)    (2*4*6)->(4*12)      (2*2*3*4)->(2*3*8)->(2*24)
      (3*4*4)    (3*4*4)->(3*16)      (2*2*3*4)->(2*3*8)->(3*16)
      (2*2*12)   (3*4*4)->(4*12)      (2*2*3*4)->(2*4*6)->(2*24)
      (2*2*2*6)  (2*2*12)->(2*24)     (2*2*3*4)->(2*4*6)->(4*12)
      (2*2*3*4)  (2*2*12)->(4*12)     (2*2*3*4)->(3*4*4)->(3*16)
                 (2*2*2*6)->(6*8)     (2*2*3*4)->(3*4*4)->(4*12)
                 (2*2*3*4)->(6*8)     (2*2*2*6)->(2*2*12)->(2*24)
                 (2*2*2*6)->(2*24)    (2*2*2*6)->(2*2*12)->(4*12)
                 (2*2*2*6)->(4*12)    (2*2*3*4)->(2*2*12)->(2*24)
                 (2*2*3*4)->(2*24)    (2*2*3*4)->(2*2*12)->(4*12)
                 (2*2*3*4)->(3*16)
                 (2*2*3*4)->(4*12)
                 (2*2*2*6)->(2*4*6)
                 (2*2*3*4)->(2*3*8)
                 (2*2*3*4)->(2*4*6)
                 (2*2*3*4)->(3*4*4)
                 (2*2*2*6)->(2*2*12)
                 (2*2*3*4)->(2*2*12)
		

Crossrefs

Row lengths are A001222.
Row sums are A317176.
Column k = 1 is A010051.
Column k = 2 is A066247.
Column k = 3 is A330936.
Final terms of each row are A317145.
The version for set partitions is A008826, with row sums A005121.
The version for integer partitions is A330785, with row sums A213427.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    upfacs[q_]:=Union[Sort/@Join@@@Tuples[facs/@q]];
    paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
    Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upfacs[y],y],{y,facs[n]}],{n},First[facs[n]]],Length[#]==k-1&]],{n,100},{k,PrimeOmega[n]}]

Formula

T(2^n,k) = A330785(n,k).
T(n,1) + T(n,2) = 1.
Showing 1-3 of 3 results.